Article

Molecular and functional characterization of a unique sucrose hydrolase from Xanthomonas axonopodis pv. glycines.

School of Agricultural Biotechnology, Seoul National University, Seoul 151-742, South Korea.
Journal of Bacteriology (Impact Factor: 3.19). 02/2004; 186(2):411-8. DOI: 10.1128/JB.186.2.411-418.2004
Source: PubMed

ABSTRACT A novel sucrose hydrolase (SUH) from Xanthomonas axonopodis pv. glycines, a causative agent of bacterial pustule disease on soybeans, was studied at the functional and molecular levels. SUH was shown to act rather specifically on sucrose (K(m) = 2.5 mM) but not on sucrose-6-phosphate. Protein analysis of purified SUH revealed that, in this monomeric enzyme with an estimated molecular mass of 70,223 +/- 12 Da, amino acid sequences determined for several segments have corresponding nucleotide sequences in XAC3490, a protein-coding gene found in the genome of X. axonopodis pv. citri. Based on this information, the SUH gene, consisting of an open reading frame of 1,935 bp, was cloned by screening a genomic library of X. axonopodis pv. glycines 8ra. Database searches and sequence comparison revealed that SUH has significant homology to some family 13 enzymes, with all of the crucial invariant residues involved in the catalytic mechanism conserved, but it shows no similarity to known invertases belonging to family 32. suh expression in X. axonopodis pv. glycines requires sucrose induction, and insertional mutagenesis resulted in an absence of sucrose-inducible sucrose hydrolase activity in crude protein extracts and a sucrose-negative phenotype. Recombinant SUH, overproduced in Escherichia coli and purified, was shown to have the same enzymatic characteristics in terms of kinetic parameters.

0 Bookmarks
 · 
68 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amylosucrases (ASes) catalyze the formation of an α-1,4-glucosidic linkage by transferring a glucosyl unit from sucrose onto an acceptor α-1,4-glucan. To date, several ligand-bound crystal structures of wild-type and mutant ASes from Neisseria polysaccharea and Deinococcus geothermalis have been solved. These structures all display a very similar overall conformation with a deep pocket leading to the site for transglucosylation, subsite -1. This has led to speculation on how sucrose enters the active site during glucan elongation. In contrast to previous studies, the AS structure from D. radiodurans presented here has a completely empty -1 subsite. This structure is strikingly different from other AS structures, as an active-site-lining loop comprising residues Leu214-Asn225 is found in a previously unobserved conformation. In addition, a large loop harbouring the conserved active-site residues Asp133 and Tyr136 is disordered. The result of the changed loop conformations is that the active-site topology is radically changed, leaving subsite -1 exposed and partially dismantled. This structure provides novel insights into the dynamics of ASes and comprises the first structural support for an elongation mechanism that involves considerable conformational changes to modulate accessibility to the sucrose-binding site and thereby allows successive cycles of glucosyl-moiety transfer to a growing glucan chain.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 09/2013; 69(Pt 9):973-8. · 0.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: • Sucrose exuded by plants into the rhizosphere is a crucial component for the symbiotic association between the beneficial fungus Trichoderma and plant roots. In this article we sought to identify and characterize the molecular basis of sucrose uptake into the fungal cells. • Several bioinformatics tools enabled us to identify a plant-like sucrose transporter in the genome of Trichoderma virens Gv29-8 (TvSut). Gene expression profiles in the fungal cells were analyzed by Northern blotting and quantitative real-time PCR (qRT-PCR). Biochemical and physiological studies were conducted on Gv29-8 and fungal strains impaired in the expression of TvSut. • TvSut exhibits biochemical properties similar to those described for sucrose symporters from plants. The null expression of tvsut caused a detrimental effect on fungal growth when sucrose was the sole source of carbon in the medium, and also affected the expression of genes involved in the symbiotic association. • Similar to plants, T. virens contains a highly specific sucrose/H(+) symporter that is induced in the early stages of root colonization. Our results suggest an active sucrose transference from the plant to the fungal cells during the beneficial associations. In addition, our expression experiments suggest the existence of a sucrose-dependent network in the fungal cells that regulates the symbiotic association.
    New Phytologist 11/2010; 189(3):777-89. · 6.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Xanthomonas axonopodis pv. glycines 8ra is a causal agent of bacterial pustule disease in soybean. This bacterium possesses transcription activator-like (TAL) effectors which are useful for genetic/protein engineering applications in higher organisms including plants and humans. Here, we report that the draft genome sequence consists of 5,337,885-bp double-stranded DNA encoding 4,674 open reading frames (ORFs) in 13 different contigs. This genome sequence would be useful in applications of TAL effectors in genetic engineering and in elucidating virulence factors against plants.
    Journal of Biotechnology 01/2014; · 3.18 Impact Factor

Full-text

View
0 Downloads
Available from