Article

Characterization of a theta-replicating plasmid from Streptococcus thermophilus.

Département de biochimie et de microbiologie, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, Canada G1K 7P4.
Plasmid (Impact Factor: 1.28). 02/2004; 51(1):24-36. DOI: 10.1016/j.plasmid.2003.09.004
Source: PubMed

ABSTRACT Plasmids of Streptococcus thermophilus were previously classified, based on DNA homology, into at least four groups (A-D). Here, we report the characterization of plasmids of group B and D. The sequence analysis of pSMQ173b (group D) indicates that this plasmid contains 4449 bp, five open reading frames (ORFs) and replicates via the rolling-circle mechanism of the pGI3 family. The plasmid pSMQ308 (group B) contains 8144 bp and six ORFs. Two ORFs likely encode a primase/helicase and an integrase. Northern blot experiments demonstrate that these two orfs are transcribed within the three strains containing plasmids of group B. Two-dimensional agarose gel electrophoresis shows that pSMQ308 replicates via a theta mechanism. To our knowledge, this is the first report of a plasmid replicating via a theta mode in S. thermophilus. Finally, a classification of 20 sequenced S. thermophilus plasmids into six groups based on their mode of replication is proposed.

0 Bookmarks
 · 
64 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clustered regularly interspaced short palindromic repeats (CRISPR) are hypervariable loci widely distributed in prokaryotes that provide acquired immunity against foreign genetic elements. Here, we characterize a novel Streptococcus thermophilus locus, CRISPR3, and experimentally demonstrate its ability to integrate novel spacers in response to bacteriophage. Also, we analyze CRISPR diversity and activity across three distinct CRISPR loci in several S. thermophilus strains. We show that both CRISPR repeats and cas genes are locus specific and functionally coupled. A total of 124 strains were studied, and 109 unique spacer arrangements were observed across the three CRISPR loci. Overall, 3,626 spacers were analyzed, including 2,829 for CRISPR1 (782 unique), 173 for CRISPR2 (16 unique), and 624 for CRISPR3 (154 unique). Sequence analysis of the spacers revealed homology and identity to phage sequences (77%), plasmid sequences (16%), and S. thermophilus chromosomal sequences (7%). Polymorphisms were observed for the CRISPR repeats, CRISPR spacers, cas genes, CRISPR motif, locus architecture, and specific sequence content. Interestingly, CRISPR loci evolved both via polarized addition of novel spacers after exposure to foreign genetic elements and via internal deletion of spacers. We hypothesize that the level of diversity is correlated with relative CRISPR activity and propose that the activity is highest for CRISPR1, followed by CRISPR3, while CRISPR2 may be degenerate. Globally, the dynamic nature of CRISPR loci might prove valuable for typing and comparative analyses of strains and microbial populations. Also, CRISPRs provide critical insights into the relationships between prokaryotes and their environments, notably the coevolution of host and viral genomes.
    Journal of bacteriology 03/2008; 190(4):1401-12. · 3.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The sequence analysis of the 7383 bp plasmid pCIZ2 from Enterococcus faecium L50 enabled the identification of a DNA region involved in its replication. The structural organization of the pCIZ2 replication region is highly similar to those of well-known theta-replicating plasmids. It contains an untranslated region, the putative replication origin (ori), constituted by two sets of direct repeats of 12 and 22 bp (iterons), and followed by three open-reading frames (orf8 to orf10). orf8 encodes the replication initiation protein (RepE). The transcriptional start site of the replication locus was identified 13 nucleotides upstream of the repE start codon. A two-dimensional agarose gel electrophoresis analysis revealed pCIZ2 intermediates profile typical of the theta-type replication mechanism. Subcloning of different DNA fragments of the pCIZ2 replication region in Escherichia coli and, subsequently, in the plasmidless E. faecium L50/14-2 allowed the determination of the minimal replicon on a 1.2kb DNA fragment containing only the overall ori and repE which also act in trans. The involvement of orf9 in the plasmid copy number and in the plasmid stability was investigated. The pCIZ2 recombinant plasmids constitute narrow-host range shuttle cloning vectors (E. coli-E. faecium) that could be very useful for enterococcal genes studies, allowing an easy identification due to their histochemical recognition.
    Plasmid 10/2008; 60(3):181-9. · 1.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dairy starter culture research is currently moving through an exciting period which increasingly uses state-of-the-art functional genomics overlaid on traditional microbiology. To date, 25 lactic acid bacteria (LAB) genomes have been sequenced, most of which are genetically pliable using food-grade approaches. An in-depth knowledge of intricate metabolic networks of industrial strains will provide us with a repertoire of genetic markers for ‘knowledge-based’ selection of desirable LAB and expansion of molecular tools for potential strain improvement. This review explores the significance of the genomics era for dairy cultures and discusses future directions which will ultimately change how we interpret starter performance.
    International Journal of Dairy Technology 04/2010; 63(2):149 - 170. · 1.18 Impact Factor

Full-text

View
3 Downloads
Available from
Jun 19, 2014
Available from