Article

Induction of nitric oxide production mediated by tumor necrosis factor alpha on staphylococcal enterotoxin C-stimulated bovine mammary gland cells.

T-Cell Research Institute, Minami-Yoshinari, Aobaku, Japan.
Clinical and Diagnostic Laboratory Immunology (Impact Factor: 2.51). 02/2004; 11(1):203-10. DOI: 10.1128/CDLI.11.1.203-210.2004
Source: PubMed

ABSTRACT Mammary gland (MG) secretions (MGS) derived from secretory cows infected with coagulase-negative staphylococci (CoNS) showed somatic cell counts and lactoferrin similar to levels found in the MGS of secretory cows infected with Staphylococcus aureus. However, nitrite and nitrate (NOx) and staphylococcal enterotoxin C (SEC) were found in MGS infected with S. aureus at much higher levels than in cows infected with CoNS. These results suggested that NOx could be intimately correlated with the production of SEC in secretory cows infected with S. aureus. Therefore, we examined the production of NOx and the expression of proinflammatory cytokines and microsomal cytochrome P450 (CYP450) after injection of SEC into the MGS of secretory cows. We were able to detect NOx and the proinflammatory cytokine tumor necrosis factor alpha (TNF-alpha) on MG cells of SEC-injected MGS. It was also found that CYP450 in the MG cells from SEC-injected MGS was down-regulated by approximately one-third in comparison with the cells from phosphate-buffered saline-injected MGS. This in vitro system also showed that NOx could be induced in the culture of bovine macrophage-lined cells (FBM-17) with the supernatants of SEC-stimulated bovine peripheral blood lymphocytes (BoPBLs) but not in the culture of peripheral mononuclear cells with SEC-stimulated BoPBLs. The expression of the mRNA for both inducible nitric oxide synthase and TNF-alpha in FBM-17 was enhanced by culturing with the supernatant of SEC-stimulated BoPBLs, although CYP450 was down-regulated. These results indicate that the down-regulation of CYP450 was caused by the production of TNF-alpha in SEC-stimulating MG cells containing macrophages and via NOx production. Therefore, we suggest that NOx released from activated MG cells via the superantigenic activity of SEC caused oxidative damage to the MG in S. aureus-induced mastitis.

0 Bookmarks
 · 
78 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bovine mastitis is a serious veterinary disease that causes great loss to the dairy industry worldwide. It is a major infectious disease and is difficult to manage and control. Furthermore, emerging multi-drug resistant bacteria that cause mastitis have complicated such management. The free radical nitric oxide (NO) is a potent antimicrobial agent. Thus, the aims of this study were to prepare and evaluate the antibacterial activity of nitric oxide-releasing polymeric particles against Staphylococcus aureus (MBSA) and Escherichia coli (MBEC), which were isolated from bovine mastitis. Fifteen MBSA isolates and fifteen MBEC were collected from subclinical and clinical bovine mastitis. Biocompatible polymeric particles composed of alginate/chitosan or chitosan/sodium tripolyphosphate (TPP) were prepared and used to encapsulate mercaptosuccinic acid (MSA), which is a thiol-containing molecule. Nitrosation of thiol groups of MSA-containing particles formed S-nitroso-MSA particles, which are NO donors. The NO release kinetics from the S-nitroso-MSA particles showed sustained and controlled NO release over several hours. The antibacterial activity of NO-releasing particles was evaluated by incubating the particles with an MBSA multi-resistant strain, which is responsible for bovine mastitis. The minimum inhibitory concentration for S-nitroso-MSA-alginate/chitosan particles against MBSA ranged from 125μg/mL to 250μg/mL. The results indicate that NO-releasing polymeric particles are an interesting approach to combating bacteria resistance in bovine mastitis treatment and prevention.
    International Journal of Pharmaceutics 06/2014; · 3.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of the study was to evaluate the effects of intramammary infusion of a bio-response modifier (BRM) prepared from Nocardia globerula on certain inflammatory markers and percentage of neutrophil/lymphocyte in mammary secretions during bovine Staphylococcus aureus subclinical mastitis (SCM). The somatic cell count (SCC), total bacterial count (TBC) in milk, cyclooxygenase-2 (COX-2) activity, production of nitrite and nitrate (NOx) in milk leukocytes and neutrophil % and lymphocyte % in milk were evaluated before and after intramammary infusion of BRM in healthy and quarters inflicted with S. aureus SCM. Intramammary infusion of BRM significantly enhanced the SCC in earlier phase with subsequent reduction on day 7 after initiation of treatment. Whereas, the reduction of TBC was observed from day 3 onwards. The COX-2 activity and NOx production in milk cell increased initially on day 3 of post treatment but reduced on day 5 in SCM infected quarters following BRM infusion. The neutrophil % and lymphocyte % in milk also enhanced significantly on day 3 but reduced on day 5 in SCM infected quarters in response to BRM infusion. Initial influx of SCC, increased neutrophil%, lymphocyte % and enhanced COX-2 and NOx activity indicate the immunomodulatory potential of BRM in S. aureus SCM. Reduction of TBC could be due to increased leukocytosis or direct microbicidal activity of the activated milk cells. The beneficial effect of the BRM could be used as alternative therapy in the control of S. aureus SCM in cows, either alone or in conjunction with antibiotic therapy.
    Veterinary Research Communications 05/2014; 38(3). · 1.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous investigations have demonstrated that ginsenoside Rg3 (Rg3) has many actions including antitumor, antioxidative, and immunomodulatory effects. However, Rg3 exists as 2 stereoisomeric pairs, 20(S)-ginsenoside Rg3 [20(S)-Rg3] and 20(R)-ginsenoside Rg3 [20(R)-Rg3], which have disparate pharmacological actions because of their different chemical structures. In this study, the 2 epimers were compared for their effects on the growth of hepatocellular carcinoma H22 transplanted tumors and the immune function of H22-bearing mice. In vivo efficacy study showed that the growth of H22 transplanted tumors was significantly inhibited when treated with 20(S)-Rg3 and 20(R)-Rg3 (P < 0.05), and the inhibition rate of tumor growth was 23.6% and 40.9%, respectively. Furthermore, the cellular immunity of H22-bearing mice was remarkably enhanced after Rg3 treatment (P < 0.05), which may be due to stimulation of ConA-induced lymphocyte proliferation and augmentation of Th1-type cytokines interleukin-2 and interferon-γ levels in mice. Interestingly, the effects of 20(R)-Rg3 were significantly greater than those of the S-form (P < 0.05). Taken together, these results indicate that Rg3 inhibits H22 tumor growth in vivo at least partly by improving the host's cellular immunity in a stereospecific manner, and 20(R)-Rg3 is more potent for treating cancers or other immune-mediated diseases clinically.
    Journal of Food Science 07/2014; 79(7). · 1.78 Impact Factor

Full-text (2 Sources)

Download
46 Downloads
Available from
May 26, 2014