The lateral line of zebrafish: A model system for the analysis of morphogenesis and neural development in vertebrates. Biology of the Cell, 95, 579-587

Laboratoire de Neurogénétique, INSERM E343 Université Montpellier II, cc103 Place E. Bataillon, 34095 Montpellier, France.
Biology of the Cell (Impact Factor: 3.51). 01/2004; 95(9):579-87. DOI: 10.1016/j.biolcel.2003.10.005
Source: PubMed


The lateral line of the zebrafish has many of the advantages that made the sensory organs of Drosophila a very productive model system: 1) it comprises a set of discrete sense organs (neuromasts) arranged in a defined, species-specific pattern, such that each organ can be individually recognized; 2) the neuromasts are superficial and easy to visualize, and the innervating neurons are easy to label; 3) the sensory projection is simple yet reproducibly organized. Here we describe some of the tools that can be used to investigate the development of this system, and we illustrate their usefulness with specific examples. We conclude that the lateral line is uniquely suited among vertebrate sensory systems for a molecular, cellular and genetic analysis of pattern formation and of neural development.

1 Follower
11 Reads
  • Source
    • "Upon deflection induced by sound or head movements, hair bundles transduce mechanical stimuli into graded receptor potentials. Within the basolateral compartment, HCs transmit signals to afferent neurons, and in some cases receive signals from efferent neurons [2], [3]. In addition to the transduction and synaptic machinery, a number of channels and transporters are spatially restricted to the apical or basolateral ends of HCs. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The hair cells of the inner ear are polarized epithelial cells with a specialized structure at the apical surface, the mechanosensitive hair bundle. Mechanotransduction occurs within the hair bundle, whereas synaptic transmission takes place at the basolateral membrane. The molecular basis of the development and maintenance of the apical and basal compartments in sensory hair cells is poorly understood. Here we describe auditory/vestibular mutants isolated from forward genetic screens in zebrafish with lesions in the adaptor protein 1 beta subunit 1 (ap1b1) gene. Ap1b1 is a subunit of the adaptor complex AP-1, which has been implicated in the targeting of basolateral membrane proteins. In ap1b1 mutants we observed that although the overall development of the inner ear and lateral-line organ appeared normal, the sensory epithelium showed progressive signs of degeneration. Mechanically-evoked calcium transients were reduced in mutant hair cells, indicating that mechanotransduction was also compromised. To gain insight into the cellular and molecular defects in ap1b1 mutants, we examined the localization of basolateral membrane proteins in hair cells. We observed that the Na(+)/K(+)-ATPase pump (NKA) was less abundant in the basolateral membrane and was mislocalized to apical bundles in ap1b1 mutant hair cells. Accordingly, intracellular Na(+) levels were increased in ap1b1 mutant hair cells. Our results suggest that Ap1b1 is essential for maintaining integrity and ion homeostasis in hair cells.
    PLoS ONE 04/2013; 8(4):e60866. DOI:10.1371/journal.pone.0060866 · 3.23 Impact Factor
  • Source
    • "PLL neuromasts occur in two stripes along the side of the fish's body. There are approximately 8 PLL neuromasts per side in a 6 day old zebrafish larva [22] (Figure S1). Each neuromast is composed of 8 hair cells, half of which respond best to water flow in the anterior direction and half to water flow in the posterior direction [7], [23]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.
    PLoS ONE 05/2012; 7(5):e37292. DOI:10.1371/journal.pone.0037292 · 3.23 Impact Factor
  • Source
    • "The lateral line, a sensory organ specific to fish and amphibians, offers an excellent alternative "model organ" for the inner ear, because of its strong similarities and common developmental program [1-4]. The superficially and stereotypically distributed sensory patches along the side of the fish are called neuromasts [3,5]. Like neuroepithelia in the inner ear, neuromasts are composed of two main cell types, hair cells and supporting cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Because of the structural and molecular similarities between the two systems, the lateral line, a fish and amphibian specific sensory organ, has been widely used in zebrafish as a model to study the development/biology of neuroepithelia of the inner ear. Both organs have hair cells, which are the mechanoreceptor cells, and supporting cells providing other functions to the epithelium. In most vertebrates (excluding mammals), supporting cells comprise a pool of progenitors that replace damaged or dead hair cells. However, the lack of regenerative capacity in mammals is the single leading cause for acquired hearing disorders in humans. In an effort to understand the regenerative process of hair cells in fish, we characterized and cloned an egfp transgenic stable fish line that trapped tnks1bp1, a highly conserved gene that has been implicated in the maintenance of telomeres' length. We then used this Tg(tnks1bp1:EGFP) line in a FACsorting strategy combined with microarrays to identify new molecular markers for supporting cells. We present a Tg(tnks1bp1:EGFP) stable transgenic line, which we used to establish a transcriptional profile of supporting cells in the zebrafish lateral line. Therefore we are providing a new set of markers specific for supporting cells as well as candidates for functional analysis of this important cell type. This will prove to be a valuable tool for the study of regeneration in the lateral line of zebrafish in particular and for regeneration of neuroepithelia in general.
    BMC Developmental Biology 01/2012; 12(1):6. DOI:10.1186/1471-213X-12-6 · 2.67 Impact Factor
Show more

Preview (2 Sources)

11 Reads
Available from