Desmin myopathy

National Institutes of Health, Bethesda, MD 20892-1361, USA.
Brain (Impact Factor: 9.2). 05/2004; 127(Pt 4):723-34. DOI: 10.1093/brain/awh033
Source: PubMed


Desmin myopathy is a recently identified disease associated with mutations in desmin or alphaB-crystallin. Typically, the illness presents with lower limb muscle weakness slowly spreading to involve truncal, neck-flexor, facial, bulbar and respiratory muscles. Skeletal myopathy is often combined with cardiomyopathy manifested by conduction blocks and arrhythmias resulting in premature sudden death. Sections of the affected skeletal and cardiac muscles show abnormal fibre areas containing amorphous eosinophilic deposits seen as granular or granulofilamentous material on electron microscopic examination. Immuno-staining for desmin is positive in each region containing abnormal structures. The inheritance pattern in familial desmin myopathy is autosomal dominant or autosomal recessive, but many cases have no family history. At least some, and probably most, non-familial desmin myopathy cases are associated with de novo desmin mutations. Age of disease onset and rate of progression may vary depending on the type of inheritance and location of the causative mutation. Multiple mutations have been identified in the desmin gene: point substitutions, insertion, small in-frame deletions and a larger exon-skipping deletion. The majority of these mutations are located in conserved alpha-helical segments of desmin. Many of the missense mutations result in changing the original amino acid into proline, which is known as a helix breaker. Studies of transfected cell cultures indicate that mutant desmin is assembly-incompetent and able to disrupt a pre-existing filamentous network in dominant-negative fashion. Disease-associated desmin mutations in humans or transgenic mice cause accumulation of chimeric intracellular aggregates containing desmin and other cytoskeletal proteins. alphaB-crystallin serves in the muscle as a chaperone preventing desmin aggregation under various forms of stress. If mutated, alphaB-crystallin may cause a myopathy similar to those resulting from desmin mutations. Routine genetic testing of patients for mutations in desmin and alphaB- crystallin genes is now available and necessary for establishing an accurate diagnosis and providing appropriate genetic counselling. Better understanding of disease pathogenesis would stimulate research focused on developing specific treatments for these conditions.

Download full-text


Available from: Lev G Goldfarb, Sep 23, 2014
  • Source
    • "AGEs and lipid peroxidation end-products accumulate in PAD muscle and, particularly, in PAD myofibers (Norgren et al. 2007; Pipinos et al. 2008, 2007). Desmin links neighboring myofibrils into bundles through their Z-discs (Capetanaki et al. 2007; Dalakas et al. 2000), aligns the Z-discs of neighboring myofibers (Capetanaki et al. 1997; Carlsson and Thornell 2001; Lazarides 1980), organizes the mitochondria into a welldefined functional network around the myofibrils (Capetanaki et al. 1997; Milner et al. 2000) and facilitates transmission of the force of sarcomere contraction to the ECM (Bloch and Gonzalez-Serratos 2003; Capetanaki et al. 2007; Carlsson and Thornell 2001; Goldfarb et al. 2004; Paulin et al. 2004). Mitochondrial dysfunction in PAD skeletal muscle is well documented (Makris et al. 2007; Pipinos et al. 2006; Pipinos et al. 2003; Pipinos et al. 2000). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with peripheral artery disease (PAD) develop a myopathy in their ischemic lower extremities, which is characterized by myofiber degeneration, mitochondrial dysfunction and impaired limb function. Desmin, a protein of the cytoskeleton, is central to maintenance of the structure, shape and function of the myofiber and its organelles, especially the mitochondria, and to translation of sarcomere contraction into muscle contraction. In this study, we investigated the hypothesis that disruption of the desmin network occurs in gastrocnemius myofibers of PAD patients and correlates with altered myofiber morphology, mitochondrial dysfunction, and impaired limb function. Using fluorescence microscopy, we evaluated desmin organization and quantified myofiber content in the gastrocnemius of PAD and control patients. Desmin was highly disorganized in PAD but not control muscles and myofiber content was increased significantly in PAD compared to control muscles. By qPCR, we found that desmin gene transcripts were increased in the gastrocnemius of PAD patients as compared with control patients. Increased desmin and desmin gene transcripts in PAD muscles correlated with altered myofiber morphology, decreased mitochondrial respiration, reduced calf muscle strength and decreased walking performance. In conclusion, our studies identified disruption of the desmin system in gastrocnemius myofibers as an index of the myopathy and limitation of muscle function in patients with PAD.
    Journal of Histochemistry and Cytochemistry 01/2015; DOI:10.1369/0022155415569348 · 1.96 Impact Factor
  • Source
    • "Mutations in the gene encoding desmin (DES, HGNC: 2770) are responsible for the most studied subgroup of myofibrillar myopathies (MFM), diseases affecting cardiac and skeletal muscles, called desminopathies [1]. Desminopathies exhibit characteristic histology, with desmin-containing protein aggregates in cardiac and skeletal muscle cell cytoplasm. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations within the human desmin gene are responsible for a subcategory of myofibrillar myopathies called desminopathies. However, a single inherited mutation can produce different phenotypes within a family, suggesting that environmental factors influence disease states. Although several mouse models have been used to investigate organ-specific desminopathies, a more general mechanistic perspective is required to advance our knowledge toward patient treatment. To improve our understanding of disease pathology, we have developed cellular models to observe desmin behaviour in early stages of disease pathology, e.g., upon formation of cytoplasmic desmin aggregates, within an isogenic background. We cloned the wildtype and three mutant desmin cDNAs using a Tet-On Advanced® expression system in C2C12 cells. Mutations were selected based on positioning within desmin and capacity to form aggregates in transient experiments, as follows: DesS46Y (head domain; low aggregation), DesD399Y (central rod domain; high aggregation), and DesS460I (tail domain; moderate aggregation). Introduction of these proteins into a C2C12 background permitted us to compare between desmin variants as well as to determine the role of external stress on aggregation. Three different types of stress, likely encountered during muscle activity, were introduced to the cell models-thermal (heat shock), redox-associated (H2O2 and cadmium chloride), and mechanical (stretching) stresses-after which aggregation was measured. Cells containing variant DesD399Y were more sensitive to stress, leading to marked cytoplasmic perinuclear aggregations. We then evaluated the capacity of biochemical compounds to prevent this aggregation, applying dexamethasone (an inducer of heat shock proteins), fisetin or N-acetyl-L-cysteine (antioxidants) before stress induction. Interestingly, N-acetyl-L-cysteine pre-treatment prevented DesD399Y aggregation during most stress. N-acetyl-L-cysteine has recently been described as a promising antioxidant in myopathies linked to selenoprotein N or ryanodin receptor defects. Our findings indicate that this drug warrants further study in animal models to speed its potential development as a therapy for DesD399Y-linked desminopathies.
    PLoS ONE 10/2013; 8(10):e76361. DOI:10.1371/journal.pone.0076361 · 3.23 Impact Factor
  • Source
    • "The high frequency of an αB-crystallin signal in morphologically normal fibers is very similar to what has previously been demonstrated in sIBM [12,17] and suggests that an early underlying cell stress response is active in GNE myopathy. Since αB-crystallin has been shown to be important to protect from accumulation of unwanted proteins such as β-amyloid in muscle as well as in the brain [18-20], it is possible that muscle fibers upregulate αB-crystallin in order to downmodulate toxicity of APP and/or oligomers of β-amyloid, which may be present in muscle fibers even in absence of vacuoles or inclusion bodies [12]. This is in line with previous evidence that overexpression of APP in muscle cells led to an upregulation of αB-crystallin [21]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Mutations of the UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine-kinase (GNE)-gene are causally related to GNE myopathy. Yet, underlying pathomechanisms of muscle fibre damage have remained elusive. In sporadic inclusion body myositis (sIBM), the pro-inflammatory cell-stress mediators αB-crystallin and inducible nitric oxide synthase (iNOS) are crucial markers of the disease pathology. Methods 10 muscle biopsies from GNE myopathy patients were analyzed for mRNA-expression of markers of cell-stress, inflammation and β-amyloid and compared to non-myopathic controls. Using double-labeling immunohistochemistry, serial sections of skeletal muscle biopsies were stained for amyloid precursor protein (APP), major histocompatibility complex (MHC)-I, αB-crystallin, neural cell adhesion molecule (NCAM), interleukin (IL)-1β, β-amyloid, iNOS, and phosphorylated neurofilament (P-neurofilament) as well as hematoxylin/eosin histochemistry. Corresponding areas of all biopsies with a total of 2,817 muscle fibres were quantitatively assessed for all markers. Results mRNA-expression of APP, NCAM, iNOS, TNF-α and TGF-β was higher in GNE myopathy compared to controls, yet this was not statistically significant. The mRNA-expression of APP and αB-crystallin significantly correlated with the expression of several pro-inflammatory and cell-stress-associated markers as NCAM, IL-1β, TGF-β, CCL-3, and CCL4. By immunohistochemistry, αB-crystallin and iNOS were co-upregulated and the number of fibres positive for αB-crystallin, NCAM, MHC-I and iNOS significantly correlated with each other. A large fraction of fibres positive for αB-crystallin were double positive for iNOS and vice-versa. Moreover, several fibres with structural abnormalities were positive for αB-crystallin and iNOS. Notably, particularly normal appearing fibres displayed an overexpression of these molecules. Conclusions The cell-stress molecules αB-crystallin and iNOS are overexpressed in GNE myopathy muscle and may identify early disease mechanisms. The data help to better understand the pathology of GNE myopathy.
    BMC Neurology 03/2013; 13(1):24. DOI:10.1186/1471-2377-13-24 · 2.04 Impact Factor
Show more