hIan5: the human ortholog to the rat Ian4/Iddm1/lyp is a new member of the Ian family that is overexpressed in B-cell lymphoid malignancies

Department of Medicine III, University Hospital Ulm, Ulm, Germany.
Genes and Immunity (Impact Factor: 3.79). 04/2004; 5(2):109-16. DOI: 10.1038/sj.gene.6364044
Source: PubMed

ABSTRACT The family of immune associated nucleotide binding proteins (Ian) is a distinct family of GTP-binding proteins conserved in plants, mice, rats and humans that are associated with immune functions, suggesting involvement in conserved defense mechanisms. Recently, the rat Ian4 (rIan4) was cloned and it appears to be identical to the gene Iddm1/lyp responsible for severe lymphopenia and the development of insulin-dependent diabetes in the BB-DP rat. Here we describe the characterization of a new human member of the Ian family: hIan5. hIan5 is highly homologous to rIan4, has a predicted molecular weight of 35 kDa and contains distinct G motifs of GTP-binding proteins (G-1 to G-4) in the N-terminus. Human Ian5 is anchored to the mitochondria by the hydrophobic COOH-terminal domain. Human Ian5 is highly expressed in lymph node and spleen. Different blood fractions show high hIan5 expression in CD4- and CD8-positive T cells and monocytes, but not in B lymphocytes. In contrast, in B-CLL (chronic lymphocytic leukemia) and mantle cell lymphoma samples, hIan5 mRNA was upregulated. The current data underline the role of hIan5 in T-lymphocyte development and function, and for the first time suggest that upregulation of Ian proteins is associated with B-cell malignancy, possibly by inhibiting apoptosis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The initial response of lymphoid malignancies to glucocorticoids (GCs) is a critical parameter predicting successful treatment. Although being known as a strong inducer of apoptosis in lymphoid cells for almost a century, the signaling pathways regulating the susceptibility of the cells to GCs are only partly revealed. There is still a need to develop clinical tests that can predict the outcome of GC therapy. In this paper, I discuss important parameters modulating the pro-apoptotic effects of GCs, with a specific emphasis on the microRNA world comprised of small players with big impacts. The journey through the multifaceted complexity of GC-induced apoptosis brings forth explanations for the differential treatment response and raises potential strategies for overcoming drug resistance.
    01/2013; 2013:348212. DOI:10.1155/2013/348212
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although GTPase of the immunity-associated protein (GIMAP) family are known to be most highly expressed in the cells of the immune system, their function and role remain still poorly characterized. Small GTPases in general are known to be involved in many cellular processes in a cell type-specific manner and to contribute to specific differentiation processes. Among GIMAP family, GIMAP4 is the only member reported to have true GTPase activity, and its transcription is found to be differentially regulated during early human CD4(+) T helper (Th) lymphocyte differentiation. GIMAP4 has been previously connected mainly with T- and B-cell development and survival and T-cell apoptosis. Here we show GIMAP4 to be localized into cytoskeletal elements and with the component of the trans golgi network, which suggests it to have a function in cellular transport processes. We demonstrate that depletion of GIMAP4 with RNAi results in downregulation of endoplasmic reticulum localizing chaperone VMA21. Most importantly, we discovered that GIMAP4 regulates secretion of cytokines in early differentiating human CD4(+) Th lymphocytes and in particular the secretion of interferon-γ also affecting its downstream targets.Immunology and Cell Biology advance online publication, 7 October 2014; doi:10.1038/icb.2014.86.
    Immunology and Cell Biology 10/2014; 93(2). DOI:10.1038/icb.2014.86 · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background GTPases of the immunity-associated protein family (GIMAPs) are predominantly expressed in mature lymphocytes. Studies of rodents deficient in GIMAP1, GIMAP4, or GIMAP5 have demonstrated that these GTPases regulate lymphocyte survival. In contrast to the other family members, GIMAP8 contains three potential GTP-binding domains (G-domains), a highly unusual feature suggesting a novel function for this protein. To examine a role for GIMAP8 in lymphocyte biology we examined GIMAP8 expression during lymphocyte development. We also generated a mouse deficient in GIMAP8 and examined lymphocyte development and function. Principal Findings We show that GIMAP8 is expressed in the very early and late stages of T cell development in the thymus, at late stages during B cell development, and peripheral T and B cells. We find no defects in T or B lymphocyte development in the absence of GIMAP8. A marginal decrease in the number of recirculating bone marrow B cells suggests that GIMAP8 is important for the survival of mature B cells within the bone marrow niche. We also show that deletion of GIMAP8 results in a delay in apoptotic death of mature T cell in vitro in response to dexamethasone or γ-irradiation. However, despite these findings we find that GIMAP8-deficient mice mount normal primary and secondary responses to a T cell dependent antigen. Conclusions Despite its unique structure, GIMAP8 is not required for lymphocyte development but appears to have a minor role in maintaining recirculating B cells in the bone marrow niche and a role in regulating apoptosis of mature T cells.
    PLoS ONE 10/2014; 9(10):e110294. DOI:10.1371/journal.pone.0110294 · 3.53 Impact Factor


Available from