Article

Ethylmalonic Encephalopathy Is Caused by Mutations in ETHE1, a Gene Encoding a Mitochondrial Matrix Protein

Unit of Molecular Neurogenetics, Pierfranco and Luisa Mariani Center for the Study of Children's Mitochondrial Disorders, National Neurological Institute Carlo Besta, Milan, Italy.
The American Journal of Human Genetics (Impact Factor: 10.99). 03/2004; 74(2):239-52. DOI: 10.1086/381653
Source: PubMed

ABSTRACT Ethylmalonic encephalopathy (EE) is a devastating infantile metabolic disorder affecting the brain, gastrointestinal tract, and peripheral vessels. High levels of ethylmalonic acid are detected in the body fluids, and cytochrome c oxidase activity is decreased in skeletal muscle. By use of a combination of homozygosity mapping, integration of physical and functional genomic data sets, and mutational screening, we identified GenBank D83198 as the gene responsible for EE. We also demonstrated that the D83198 protein product is targeted to mitochondria and internalized into the matrix after energy-dependent cleavage of a short leader peptide. The gene had previously been known as "HSCO" (for hepatoma subtracted clone one). However, given its role in EE, the name of the gene has been changed to "ETHE1." The severe consequences of its malfunctioning indicate an important role of the ETHE1 gene product in mitochondrial homeostasis and energy metabolism.

Download full-text

Full-text

Available from: Adamo Pio d'Adamo, Jun 21, 2015
0 Followers
 · 
180 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ethylmalonic encephalopathy (EE) is an invariably fatal disease, characterized by the accumulation of hydrogen sulfide (H(2)S), a highly toxic compound. ETHE1, encoding sulfur dioxygenase (SDO), which takes part in the mitochondrial pathway that converts sulfide into harmless sulfate, is mutated in EE. The main source of H(2)S is the anaerobic bacterial flora of the colon, although in trace amount it is also produced by tissues, where it acts as a 'gasotransmitter'. Here, we show that AAV2/8-mediated, ETHE1-gene transfer to the liver of a genetically, metabolically and clinically faithful EE mouse model resulted in full restoration of SDO activity, correction of plasma thiosulfate, a biomarker reflecting the accumulation of H(2)S, and spectacular clinical improvement. Most of treated animals were alive and well >6-8 months after birth, whereas untreated individuals live 26 ± 7 days. Our results provide proof of concept on the efficacy and safety of AAV2/8-mediated livergene therapy for EE, and alike conditions caused by the accumulation of harmful compounds in body fluids and tissues, which can directly be transferred to the clinic.
    EMBO Molecular Medicine 09/2012; 4(9):1008-14. DOI:10.1002/emmm.201201433 · 8.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in human (Homo sapiens) ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 (ETHE1) result in the complex metabolic disease ethylmalonic encephalopathy, which is characterized in part by brain lesions, lactic acidemia, excretion of ethylmalonic acid, and ultimately death. ETHE1-like genes are found in a wide range of organisms; however, the biochemical and physiological role(s) of ETHE1 have not been examined outside the context of ethylmalonic encephalopathy. In this study we characterized Arabidopsis (Arabidopsis thaliana) ETHE1 and determined the effect of an ETHE1 loss-of-function mutation to investigate the role(s) of ETHE1 in plants. Arabidopsis ETHE1 is localized in the mitochondrion and exhibits sulfur dioxygenase activity. Seeds homozygous for a DNA insertion in ETHE1 exhibit alterations in endosperm development that are accompanied by a delay in embryo development followed by embryo arrest by early heart stage. Strong ETHE1 labeling was observed in the peripheral and chalazal endosperm of wild-type seeds prior to cellularization. Therefore, ETHE1 appears to play an essential role in regulating sulfide levels in seeds.
    Plant physiology 07/2012; 160(1):226-36. DOI:10.1104/pp.112.201855 · 7.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ethylmalonic encephalopathy (EE) is a rare autosomal recessive disorder characterized by early onset encephalopathy, chronic diarrhoea, petechiae, orthostatic acrocyanosis and defective cytochrome c oxidase (COX) in muscle and brain. High levels of lactic, ethylmalonic and methylsuccinic acids are detected in body fluids. EE is caused by mutations in ETHE1, a mitochondrial sulphur dioxygenase. By studying a suitable mouse model, we found that loss of ETHE1 leads to accumulation of sulphide, which is a poison for COX and other enzymatic activities thus accounting for the main features of EE. We report here the first autopsy case of a child with a genetically confirmed diagnosis of EE, and compare the histological, histochemical and immunohistochemical findings with those of the constitutive Ethe1 (-/-) mice. In addition to COX depleted cells, widespread endothelial lesions of arterioles and capillaries of the brain and gastrointestinal tract were the pathologic hallmarks in both organisms. Our findings of diffuse vascular damage of target critical organs are in keeping with the hypothesis that the pathologic effects of ETHE1 deficiency may stem from high levels of circulating hydrogen sulphide rather than the inability of specific organs to detoxify its endogenous production.
    Journal of Inherited Metabolic Disease 10/2011; 35(3):451-8. DOI:10.1007/s10545-011-9408-3 · 4.14 Impact Factor