Article

Expression of transforming growth factor beta1 in bronchial biopsies in asthma and COPD.

Department of Pulmonary Medicine, Gazi University School of Medicine, Ankara, Turkey.
Journal of Asthma (Impact Factor: 1.85). 01/2004; 40(8):887-93.
Source: PubMed

ABSTRACT The role of transforming growth factor beta1 (TGF beta1) in airway remodeling in asthma and chronic obstructive pulmonary disease (COPD) has not been fully described. To evaluate the possible pathogenetic role of TGF beta1 in asthma and COPD, immunohistochemical expression of TGF beta1 was described in bronchial biopsies from patients with asthma and COPD compared with healthy individuals. Twelve subjects with asthma, 13 subjects with COPD, and 10 healthy individuals enrolled in the study. Bronchial biopsies were stained with hematoxylin and eosin and anti-TGF beta1 antibody. As a result, immunoreactive TGF beta1 was mainly localized in association with connective tissue in all groups. The staining intensity was not statistically different among the groups in bronchial epithelium, whereas it was significantly higher in the group of asthma in the submucosa. Because there is evidence showing a significant increase of staining intensity in the submucosa from asthmatics but not from subjects with COPD, we may conclude that TGF beta1 may play a significant role in pathogenesis of asthma but not in COPD.

0 Bookmarks
 · 
71 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Remodelling in COPD has at least two dimensions: small airway wall thickening and destruction of alveolar walls. Recent studies indicate that there is some similarity between alveolar and small airway wall matrix remodelling. The aim of this study was to characterise and assess similarities in alveolar and small airway wall matrix remodelling, and TGF-beta signalling in COPD patients of different GOLD stages.
    BMC Pulmonary Medicine 05/2014; 14(1):90. · 2.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The authors have reviewed the current literature on airway inflammation and remodeling in smoking-related chronic obstructive pulmonary disease (COPD). Detailed data on airway remodeling in COPD are especially sparse and how these changes lead to decline in lung function is not well understood. Small airway fibrosis and obliteration are likely to be the main contributors to physiological airway dysfunction and occur earlier than any subsequent development of emphysema. One potential mechanism contributing to small airway fibrosis/obliteration and change in extracellular matrix is epithelial-mesenchymal transition. When associated with angiogenesis (so-called epithelial-mesenchymal transition type 3) it may well also be the link with the development of cancer, which is closely associated with COPD, predominantly in large airways. The authors have focused on our recent publications in these areas. Further investigations teasing out these mechanisms will help improve our understanding of key airway disease processes in COPD, which may have major therapeutic implications.
    Expert Review of Respiratory Medicine 06/2013; 7(3):275-88.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A pathological hallmark of asthma is chronic injury and repair, producing dysfunction of the epithelial barrier function. In this setting, increased oxidative stress, growth factor- and cytokine stimulation, together with extracellular matrix contact produces transcriptional reprogramming of the epithelial cell. This process results in epithelial-mesenchymal transition (EMT), a cellular state associated with loss of epithelial polarity, expression of mesenchymal markers, enhanced mobility and extracellular matrix remodeling. As a result, the cellular biology of the EMT state produces characteristic changes seen in severe, refractory asthma: myofibroblast expansion, epithelial trans-differentiation and subepithelial fibrosis. EMT also induces profound changes in epithelial responsiveness that affects innate immune signaling that may have impact on the adaptive immune response and effectiveness of glucocorticoid therapy in severe asthma. We discuss how this complex phenotype is beginning to be understood using systems biology-level approaches through perturbations coupled with high throughput profiling and computational modeling. Understanding the distinct changes induced by EMT at the systems level may provide translational strategies to reverse the altered signaling and physiology of refractory asthma.
    The World Allergy Organization journal. 01/2014; 7(1):13.