Article

Expression of transforming growth factor beta1 in bronchial biopsies in asthma and COPD.

Department of Pulmonary Medicine, Gazi University School of Medicine, Ankara, Turkey.
Journal of Asthma (Impact Factor: 1.85). 01/2004; 40(8):887-93.
Source: PubMed

ABSTRACT The role of transforming growth factor beta1 (TGF beta1) in airway remodeling in asthma and chronic obstructive pulmonary disease (COPD) has not been fully described. To evaluate the possible pathogenetic role of TGF beta1 in asthma and COPD, immunohistochemical expression of TGF beta1 was described in bronchial biopsies from patients with asthma and COPD compared with healthy individuals. Twelve subjects with asthma, 13 subjects with COPD, and 10 healthy individuals enrolled in the study. Bronchial biopsies were stained with hematoxylin and eosin and anti-TGF beta1 antibody. As a result, immunoreactive TGF beta1 was mainly localized in association with connective tissue in all groups. The staining intensity was not statistically different among the groups in bronchial epithelium, whereas it was significantly higher in the group of asthma in the submucosa. Because there is evidence showing a significant increase of staining intensity in the submucosa from asthmatics but not from subjects with COPD, we may conclude that TGF beta1 may play a significant role in pathogenesis of asthma but not in COPD.

0 Bookmarks
 · 
80 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Remodelling in COPD has at least two dimensions: small airway wall thickening and destruction of alveolar walls. Recent studies indicate that there is some similarity between alveolar and small airway wall matrix remodelling. The aim of this study was to characterise and assess similarities in alveolar and small airway wall matrix remodelling, and TGF-beta signalling in COPD patients of different GOLD stages.
    BMC Pulmonary Medicine 05/2014; 14(1):90. · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In COPD, matrix remodeling contributes to airflow limitation. Recent evidence suggests that next to fibroblasts, the process of epithelial-mesenchymal transition can contribute to matrix remodeling. CSE has been shown to induce EMT in lung epithelial cells, but the signaling mechanisms involved are largely unknown and subject of this study. EMT was assessed in A549 and BEAS2B cells stimulated with CSE by qPCR, Western blotting and immunofluorescence for epithelial and mesenchymal markers, as were collagen production, cell adhesion and barrier integrity as functional endpoints. Involvement of TGF-β and HIF1α signaling pathways were investigated. In addition, mouse models were used to examine the effects of CS on hypoxia signaling and of hypoxia per se on mesenchymal expression. CSE induced EMT characteristics in A549 and BEAS2B cells, evidenced by decreased expression of epithelial markers and a concomitant increase in mesenchymal marker expression after CSE exposure. Furthermore cells that underwent EMT showed increased production of collagen, decreased adhesion and disrupted barrier integrity. The induction of EMT was found to be independent of TGF-β signaling. On the contrary, CS was able to induce hypoxic signaling in A549 and BEAS2B cells as well as in mice lung tissue. Importantly, HIF1α knock-down prevented induction of mesenchymal markers, increased collagen production and decreased adhesion after CSE exposure, data that are in line with the observed induction of mesenchymal marker expression by hypoxia in vitro and in vivo. Together these data provide evidence that both bronchial and alveolar epithelial cells undergo a functional phenotypic shift in response to CSE exposure which can contribute to increased collagen deposition in COPD lungs. Moreover, HIF1α signaling appears to play an important role in this process.
    PLoS ONE 01/2014; 9(10):e107757. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A pathological hallmark of asthma is chronic injury and repair, producing dysfunction of the epithelial barrier function. In this setting, increased oxidative stress, growth factor- and cytokine stimulation, together with extracellular matrix contact produces transcriptional reprogramming of the epithelial cell. This process results in epithelial-mesenchymal transition (EMT), a cellular state associated with loss of epithelial polarity, expression of mesenchymal markers, enhanced mobility and extracellular matrix remodeling. As a result, the cellular biology of the EMT state produces characteristic changes seen in severe, refractory asthma: myofibroblast expansion, epithelial trans-differentiation and subepithelial fibrosis. EMT also induces profound changes in epithelial responsiveness that affects innate immune signaling that may have impact on the adaptive immune response and effectiveness of glucocorticoid therapy in severe asthma. We discuss how this complex phenotype is beginning to be understood using systems biology-level approaches through perturbations coupled with high throughput profiling and computational modeling. Understanding the distinct changes induced by EMT at the systems level may provide translational strategies to reverse the altered signaling and physiology of refractory asthma.
    The World Allergy Organization journal. 01/2014; 7(1):13.