Article

Specific clinical and brain MRI features in mentally retarded patients with mutations in the Oligophrenin-1 gene.

Service de Pédiatrie, HCL, Centre Hospitalier Lyon Sud, 69395 Pierre-Bénite, France.
American Journal of Medical Genetics Part A (Impact Factor: 2.3). 03/2004; 124A(4):364-71. DOI: 10.1002/ajmg.a.20422
Source: PubMed

ABSTRACT Oligophrenin-1 (OPHN-1) gene disruption is known as responsible for so called "non-specific" X-linked mental retardation (MR) Billuart et al. [1998: Nature 392:923-926]. In order to search for a possible specific clinical and radiological profile for mutation in the OPHN-1 gene, clinical and 3D brain MRI studies were performed in the two families with a known mutation in OPHN-1 reported so far: a 19-year-old female with an X;12 balanced translocation encompassing OPHN-1, and four affected males of family MRX60 sharing a frameshift mutation in OPHN-1. Clinical data shared by affected individuals were neonatal hypotonia with motor delay but no obvious ataxia, marked strabismus, early onset complex partial seizures, and moderate to severe MR. Brain MRIs performed in three individuals exhibited a specific vermian dysgenesis including an incomplete sulcation of anterior and posterior vermis with the most prominent defect in lobules VI and VII. In addition, a non-specific cerebral cortico-subcortical atrophy was also observed. These clinical and radiological features suggest a distinct clinico-radiological syndrome. These preliminary data need to be confirmed in other families and will be helpful for further targeted mutation screening of the OPHN-1 gene in male patients with similar clinico-radiological features. In addition, OPHN-1 inactivation should be considered as a relevant model of developmental vermis disorganization, leading to a better understanding of the possible role of the cerebellum in MR.

0 Bookmarks
 · 
81 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in X-linked genes are likely to account for the observation that more males than females are affected with mental retardation. Causative mutations have been identified in both syndromic XLMR and in the genetically heterogeneous non-syndromic forms of XLMR, without a clear clinical phenotype other than cognitive deficit. Progress in genome analysis and the establishment of large collaborations between clinical and molecular research teams, especially the European XLMR consortium, have led to the identification of 20 non-syndromic XLMR genes and 25 syndromic XLMR genes. Given the extensive heterogeneity of non syndromic XLMR, different strategies are used for the identification of new genes: linkage analysis, studies of balanced chromosomal rearrangements (X-autosome translocations, microdeletions) and candidate genes strategies by mutation screening in regions of the X chromosome known to be involved in neuronal development and function. Delineating the monogenic causes of XLMR and their molecular and cellular consequences will provide insight into the mechanisms that are required for normal development of cognitive function in humans. Non syndromic XLMR proteins include 5 distinct classes: transmembrane receptors, small GTPases effectors or regulators, enzymes and translational regulators.
    Revue Neurologique 10/2006; 162(10):952-963. · 0.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intellectual disability (ID) imposes a major medical and social-economical problem in our society. It is defined as a global reduction in cognitive and intellectual abilities, associated with impaired social adaptation. The causes of ID are extremely heterogeneous and include non-genetic and genetic changes. Great progress has been made over recent years towards the identification of ID-related genes, resulting in a list of approximately 450 genes. A prominent neuropathological feature of patients with ID is altered dendritic spine morphogenesis. These structural abnormalities, in part, reflect impaired cytoskeleton remodeling and are associated with synaptic dysfunction. The dynamic, actin-rich nature of dendritic spines points to the Rho GTPase family as a central contributor, since they are key regulators of actin dynamics and organization. It is therefore not surprising that mutations in genes encoding regulators and effectors of the Rho GTPases have been associated with ID. This review will focus on the role of Rho GTPase signaling in synaptic structure/function and ID.
    Experimental Cell Research 06/2013; · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the case of a 33-year-old pregnant woman. The third-trimester ultrasound scan during pregnancy revealed fetal bilateral ventricular dilatation, macrosomia and a transverse diameter of the cerebellum at the 30th centile. A brain MRI scan at 31 weeks of gestation led to a diagnosis of hypoplasia of the cerebellar vermis without hemisphere abnormalities and a non compressive expansion of the cisterna magna. The fetal karyotype was 46,XX. The pregnancy was terminated and array-CGH analysis of the fetus identified a 238 kb de novo deletion on chromosome Xp12, encompassing part of OPHN1 gene. Further studies revealed a completely skewed pattern of X inactivation. OPHN1 is involved in X-linked mental retardation (XLMR) with cerebellar hypoplasia and encodes a Rho-GTPase-activating protein called oligophrenin-1, which is produced throughout the developing mouse brain and in the hippocampus and Purkinje cells of the cerebellum in adult mice. Neuropathological examination of the female fetus revealed cerebellar hypoplasia and the heterotopia of Purkinje cells at multiple sites in the white matter of the cerebellum. This condition mostly affects male fetuses in humans. We report here the first case of a de novo partial deletion of OPHN1, with radiological and neuropathological examination, in a female fetus.
    European journal of medical genetics 02/2013; · 1.57 Impact Factor