Phase 2 evaluation of parainfluenza type 3 cold passage mutant 45 live attenuated vaccine in healthy children 6-18 months old

University of Adelaide, Tarndarnya, South Australia, Australia
The Journal of Infectious Diseases (Impact Factor: 5.78). 03/2004; 189(3):462-70. DOI: 10.1086/381184
Source: PubMed

ABSTRACT A phase 2 evaluation of live attenuated parainfluenza type 3 (PIV3)-cold passage mutant 45 (cp45) vaccine was conducted in 380 children 6-18 months old; 226 children (59%) were seronegative for PIV3. Of the 226 seronegative children, 114 received PIV3-cp45 vaccine, and 112 received placebo. No significant difference in the occurrence of adverse events (i.e., runny nose, cough, or temperature > or =38 degrees C) was noted during the 14 days after vaccination. There was no difference between groups in the occurrence of acute otitis media or serous otitis media. Paired serum samples were available for 109 of the seronegative vaccine recipients and for 110 of the seronegative placebo recipients; 84% of seronegative vaccine recipients developed a > or =4-fold increase in antibody titers. The geometric mean antibody titer after vaccination was 1 : 25 in the vaccine group and <1 : 4 in the placebo group. PIV3-cp45 vaccine was safe and immunogenic in seronegative children and should be evaluated for efficacy in a phase 3 field trial.

  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: The common cold is a spontaneously remitting infection of the upper respiratory tract, characterised by a runny nose, nasal congestion, sneezing, cough, malaise, sore throat and fever (usually < 37.8˚C). The widespread morbidity it causes worldwide is related to its ubiquitousness rather than its severity. The development of vaccines for the common cold has been difficult because of antigenic variability of the common cold virus and the indistinguishable multiple other viruses and even bacteria acting as infective agents. There is uncertainty regarding the efficacy and safety of interventions for preventing the common cold in healthy people. OBJECTIVES: To assess the clinical effectiveness and safety of vaccines for preventing the common cold in healthy people. SEARCH METHODS: We searched CENTRAL (2012, Issue 12), MEDLINE (1948 to January week 1, 2013), EMBASE (1974 to January 2013), CINAHL (1981 to January 2013) and LILACS (1982 to January 2013). SELECTION CRITERIA: Randomised controlled trials (RCTs) of any virus vaccines to prevent the common cold in healthy people. DATA COLLECTION AND ANALYSIS: Two review authors independently evaluated methodological quality and extracted trial data. Disagreements were resolved by discussion or by consulting a third review author. MAIN RESULTS: This review included one RCT with 2307 healthy participants; all of them were analysed. This trial compared the effect of an adenovirus vaccine against a placebo. No statistically significant difference in common cold incidence was found: there were 13 events in 1139 participants in the vaccines group and 14 events in 1168 participants in the placebo group; risk ratio (RR) 0.95, 95% confidence interval (CI) 0.45 to 2.02, P = 0.90). No adverse events related to the live vaccine were reported. AUTHORS' CONCLUSIONS: This Cochrane review has found a lack of evidence on the effects of vaccines for the common cold in healthy people. Only one RCT was found and this did not show differences between comparison groups; it also had a high risk of bias. There are no conclusive data to support the use of vaccines for preventing the common cold in healthy people. We identified the need for well-designed, adequately powered RCTs to investigate vaccines for the common cold in healthy people. Unless RCTs provide evidence of a treatment effect and the trade-off between potential benefits and harms is established, policy-makers, clinicians and academics should not recommend the use of vaccines for preventing the common cold in healthy people. Any future trials on medical treatments for preventing the common cold should assess a variety of virus vaccines for this condition. Outcome measures should include common cold incidence, vaccine safety and mortality related to the vaccine.
    Cochrane database of systematic reviews (Online) 06/2013; 6(6):CD002190. DOI:10.1002/14651858.CD002190.pub4 · 5.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A recombinant chimeric bovine/human parainfluenza type 3 virus (rB/HPIV3) vector expressing the respiratory syncytial virus (RSV) fusion F glycoprotein previously exhibited disappointing levels of RSV F immunogenicity and genetic stability in children (Bernstein et al., Pediatr Infect Dis J 2012;31:109-114; Yang et al., Vaccine 2013;31:2822-2827). To investigate parameters that might affect vaccine performance and stability, we constructed and characterized rB/HPIV3 viruses expressing RSV F from the 1(st) (pre-N), 2(nd) (N-P), 3(rd) (P-M), and 6(th) (HN-L) genome positions. There was a 30- to 69-fold gradient in RSV F expression from the 1(st) to the 6(th) position. The inserts moderately attenuated vector replication in vitro and in the upper and lower respiratory tracts (URT, LRT) of hamsters: this was not influenced by the level of RSV F expression and syncytium formation. Surprisingly, inserts in the 2(nd), 3(rd), and 6(th) positions conferred increased temperature-sensitivity: this was greatest for the 3(rd) position and was the most attenuating in vivo. Each rB/HPIV3 vector induced a high titer of neutralizing antibodies in hamsters against RSV and HPIV3. Protection against RSV challenge was greater for position 2 than 6. Evaluation of insert stability suggested that RSV F is under selective pressure to be silenced during vector replication in vivo, but this was not exacerbated by a high level of RSV F expression and generally involved a small percentage of recovered vector. Vector passaged in vitro accumulated mutations in the HN ORF, causing a dramatic increase in plaque size that may have implications for vaccine production and immunogenicity.Importance The research findings presented in this manuscript will be instrumental for improving the design of a bivalent pediatric vaccine for respiratory syncytial virus and parainfluenza virus type 3, two major causes of severe respiratory tract infection in infants and young children. Moreover, this knowledge has general application to the development and clinical evaluation of other mononegavirus vectors and vaccines.
    Journal of Virology 01/2014; DOI:10.1128/JVI.03481-13 · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human parainfluenza virus type 3 (HPIV3) is a common cause of upper and lower respiratory tract illness in infants and young children. Live-attenuated cold-adapted HPIV3 vaccines have been evaluated in infants but a suitable interval for administration of a second dose of vaccine has not been defined. HPIV3-seronegative children between the ages of 6 and 36 months were randomized 2:1 in a blinded study to receive two doses of 10(5) TCID50 (50% tissue culture infectious dose) of live-attenuated, recombinant cold-passaged human PIV3 vaccine (rHPIV3cp45) or placebo 6 months apart. Serum antibody levels were assessed prior to and approximately 4-6 weeks after each dose. Vaccine virus infectivity, defined as detection of vaccine-HPIV3 in nasal wash and/or a≥4-fold rise in serum antibody titer, and reactogenicity were assessed on days 3, 7, and 14 following immunization. Forty HPIV3-seronegative children (median age 13 months; range 6-35 months) were enrolled; 27 (68%) received vaccine and 13 (32%) received placebo. Infectivity was detected in 25 (96%) of 26 evaluable vaccinees following doses 1 and 9 of 26 subject (35%) following dose 2. Among those who shed virus, the median duration of viral shedding was 12 days (range 6-15 days) after dose 1 and 6 days (range 3-8 days) after dose 2, with a mean peak log10 viral titer of 3.4PFU/mL (SD: 1.0) after dose 1 compared to 1.5PFU/mL (SD: 0.92) after dose 2. Overall, reactogenicity was mild, with no difference in rates of fever and upper respiratory infection symptoms between vaccine and placebo groups. rHPIV3cp45 was immunogenic and well-tolerated in seronegative young children. A second dose administered 6 months after the initial dose was restricted in those previously infected with vaccine virus; however, the second dose boosted antibody responses and induced antibody responses in two previously uninfected children.
    Vaccine 10/2013; 31(48). DOI:10.1016/j.vaccine.2013.09.046 · 3.49 Impact Factor