New selectable markers and single crossover integration for the highly versatile Plasmodium knowlesi transfection system.

Department of Parasitology, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands.
Molecular and Biochemical Parasitology (Impact Factor: 2.73). 04/2004; 134(1):97-104. DOI: 10.1016/j.molbiopara.2003.10.019
Source: PubMed

ABSTRACT Plasmodium knowlesi provides a highly versatile transfection system for malaria, since it enables rapid genetic modification of the parasite both in vivo as well as in vitro. However, it is not possible to perform multiple genetic manipulations within one parasite line because of a lack of selectable markers. In an effort to develop additional selectable markers for this parasite, positive and negative selectable markers that have recently been successfully used in Plasmodium falciparum were tested. It was shown that the positive selectable markers human dihydrofolate reductase (hdhfr), blasticidin S deaminase (bsd) and neomycin phosphotransferase II (neo) all conferred drug resistance to P. knowlesi when introduced as episomes. The plasmid containing the hdhfr selectable marker was not only successfully introduced as circular form, but also as linear fragment, demonstrating for the first time single crossover integration in P. knowlesi. Thymidine kinase was tested for its potential as negative selectable marker and it was shown that recombinant P. knowlesi parasites expressing thymidine kinase from episomes were highly sensitive to ganciclovir compared to wild-type P. knowlesi. The availability of new positive selectable markers and a strong candidate for a negative selectable marker for P. knowlesi, in combination with the opportunity to perform targeted single crossover integration in P. knowlesi, significantly increases the flexibility of this transfection system, making it one of the most versatile systems available for Plasmodium.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium knowlesi is a primate malaria parasite that is phylogenetically close to the major human parasite Plasmodium vivax. P. knowlesi causes life-threatening disease in humans, infects a wide range of non-human primates and is one of few malaria parasites amenable to cyclical in vitro propagation. A robust in vivo and in vitro genetic manipulation system has been developed for this parasite, enabling in vitro-in vivo shuttling of transgenes, which (together with recent characterization of its genome and that of its macaque experimental host) offers unique opportunities to gain insight in molecular function and parasite-host interactions.
    Trends in Parasitology 08/2009; 25(8):370-4. · 5.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium knowlesi is a simian malaria parasite primarily infecting macaque species in Southeast Asia. Although its capacity to infect humans has been recognized since the early part of the last century, it has recently become evident that human infections are widespread and potentially life threatening. Historically, P. knowlesi has proven to be a powerful tool in early studies of malaria parasites, providing key breakthroughs in understanding many aspects of Plasmodium biology. However, the necessity to grow the parasite either in macaques or in vitro using macaque blood restricted research to laboratories with access to these resources. The recent adaptation of P. knowlesi to grow and proliferate in vitro in human red blood cells (RBCs) is therefore a substantial step towards revitalizing and expanding research on P. knowlesi. Furthermore, the development of a highly efficient transfection system to genetically modify the parasite makes P. knowlesi an ideal model to study parasite biology. In this review we elaborate on the importance of P. knowlesi in earlier phases of malaria research and highlight the future potential of the newly available human adapted P. knowlesi parasite lines.
    Cellular Microbiology 02/2014; · 4.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malaria is a major health and socio-economical problem in tropical and sub-tropical areas of the world. Several methodologies have been used to assess parasite viability during the adaption of field strains to culture or the assessment of drug potential, but these are in general not able to provide an accurate real-time assessment of whether parasites are alive or dead. Different commercial dyes and kits were assessed for their potential to allow for the real-time detection of whether a blood stage malaria parasite is dead or alive. Here, a methodology is presented based on the potential-sensitive mitochondrial probe JC-1, which allows for the real-time visualization of live (red staining) and/or dead (absence of red staining) blood stage parasites in vitro and ex vivo. This method is applicable across malaria parasite species and strains and allows to visualize all parasite blood stages including gametocytes. Further, this methodology has been assessed also for use in drug sensitivity testing. The JC-1 staining approach is a versatile methodology that can be used to assess parasite viability during the adaptation of field samples to culture and during drug treatment. It was found to hold promise in the assessment of drugs expected to lead to delayed death phenotypes and it currently being evaluated as a method for the assessment of parasite viability during the adaptation of patient-derived Plasmodium vivax to long-term in vitro culture.
    Malaria Journal 01/2013; 12:190. · 3.49 Impact Factor