Article

Glucose-induced regulation of COX-2 expression in human islets of Langerhans.

Centre for Reproduction, Endocrinology and Diabetes, King's College London, London, UK.
Diabetes (Impact Factor: 8.47). 03/2004; 53 Suppl 1:S190-2. DOI: 10.2337/diabetes.53.2007.S190
Source: PubMed

ABSTRACT Cyclo-oxygenase (COX), the enzyme responsible for conversion of arachidonic acid to prostanoids, exists as two isoforms. In most tissues, COX-1 is a constitutive enzyme involved in prostaglandin-mediated physiological processes, whereas COX-2 is thought to be induced by inflammatory stimuli. However, it has previously been reported that COX-2 is the dominant isoform in islets and an insulin-secreting beta-cell line under basal conditions. We have investigated the relative abundance of COX-1 and COX-2 mRNAs in MIN6 cells, a mouse insulin-secreting cell line, and in primary mouse and human islets. We found that COX-2 was the dominant isoform in MIN6 cells, but that COX-1 mRNA was more abundant than that of COX-2 in freshly isolated mouse islets. Furthermore, COX-2 expression was induced by maintenance of mouse islets in culture, and experiments with human islets indicated that exposure of the islets to hyperglycemic conditions was sufficient to upregulate COX-2 mRNA levels. Given that hyperglycemia has been reported to increase human beta-cell production of interleukin-1beta and that this cytokine can induce COX-2 expression, our observations of glucose-induced induction of COX-2 in human islets suggest that this is one route through which hyperglycemia may contribute to beta-cell dysfunction.

0 Bookmarks
 · 
79 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since their isolation until implantation, pancreatic islets suffer a major stress leading to the activation of inflammatory reactions. The maintenance of controlled inflammation is essential to preserve survival and function of the graft. Identification and targeting of pathway(s) implicated in post-transplant detrimental inflammatory events, is mandatory to improve islet transplantation success. We sought to characterize the expression of the pro-inflammatory and pro-oxidant mediators during islet culture with a focus on Heme oxygenase (HO-1) and Toll-like receptors-4 signaling pathways. Rat pancreatic islets were isolated and pro-inflammatory and pro-oxidant status were evaluated after 0, 12, 24 and 48 hours of culture through TLR-4, HO-1 and cyclooxygenase-2 (COX-2) expression, CCL-2 and IL-6 secretion, ROS (Reactive Oxygen Species) production (Dihydroethidine staining, DHE) and macrophages migration. To identify the therapeutic target, TLR4 inhibition (CLI-095) and HO-1 activation (cobalt protoporphyrin,CoPP) was performed. Activation of NFκB signaling pathway was also investigated. After isolation and during culture, pancreatic islet exhibited a proinflammatory and prooxidant status (increase levels of TLR-4, COX-2, CCL-2, IL-6, and ROS). Activation of HO-1 or inhibition of TLR-4 decreased inflammatory status and oxidative stress of islets. Moreover, the overexpression of HO-1 induced NFκB phosphorylation while the inhibition of TLR-4 had no effect NFκB activation. Finally, inhibition of pro-inflammatory pathway induced a reduction of macrophages migration. These data demonstrated that the TLR-4 signaling pathway is implicated in early inflammatory events leading to a pro-inflammatory and pro-oxidant status of islets in vitro. Moreover, these results provide the mechanism whereby the benefits of HO-1 target in TLR-4 signaling pathway. HO-1 could be then an interesting target to protect islets before transplantation.
    PLoS ONE 10/2014; 9(10):e107656. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pentoxifylline (PTX), a methyl xanthine derivative, is a phosphodiesterase inhibitor with anti-inflammatory and renoprotective effects in diabetic patients, among other properties. We studied PTX actions and mechanisms in reducing blood biochemical parameters, in diabetic rats. For diabetes induction, alloxan was intravenously administered to male Wistar rats. One group was left untreated and the other ones treated with PTX (25, 50 and 100 mg/kg), glibenclamide or metformin, as references. Forty-eight hours later and after 1-week to 3-month treatments, blood was collected for determination of glycemia, triglycerides, cholesterol, transaminases, fructosamine and glycated hemoglobin. Afterwards, the animals were euthanized and pancreas, liver and kidney processed for histological analyses and immunohistochemistry assays for TNF-alpha, iNOS and COX-2. The results showed that PTX decreased glycemia and also triglyceride levels, starting 1 week after treatments, as compared to the same group before treatments. Glycemia values were brought towards normality, after 1-month treatment. PTX hypoglycemic effects were potentiated by glibenclamide but not by metformin. It also decreased fructosamine and glycated hemoglobin. Some histological and immunohistochemical alterations for TNF-alpha, iNOS and COX-2 in the diabetic pancreas were also reversed by PTX. We conclude that PTX acts similarly to glibenclamide, and its hypoglycemic actions are, partly, a consequence of ATP-sensitive K + channels inhibition. In addition, by its anti-inflammatory and antioxidant properties, PTX may be a therapeutic alternative for the treatment of diabetes and its complications.
    SpringerPlus 06/2014; 3.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation has a prominent role in the development of atherosclerosis. Type 2 diabetes could contribute to atherosclerosis development by promoting inflammation. This status might accelerate changes in intrinsic vascular wall cells and favor plaque formation. Cyclooxygenase 2 (COX-2) is highly expressed in atherosclerotic plaques. COX-2 gene expression is promoted through activation of toll-like receptor 4 (TLR4) and pro-inflammatory cytokine interleukin 1β (IL1-β). Aim of this study is to investigate whether expression profiles of pro-inflammatory genes such as COX-2, TLR4 and IL1-β in atherosclerotic plaques are altered in type 2 diabetes (T2D).
    Inflammation Research 08/2014; · 2.14 Impact Factor

Full-text (2 Sources)

Download
121 Downloads
Available from
May 21, 2014