Metabolic and mitogenic effects of IGF-I and insulin on muscle cells of rainbow trout.

Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, E-08028 Barcelona, Spain.
AJP Regulatory Integrative and Comparative Physiology (Impact Factor: 3.28). 06/2004; 286(5):R935-41. DOI: 10.1152/ajpregu.00459.2003
Source: PubMed

ABSTRACT The relative function of IGF-I and insulin on fish muscle metabolism and growth has been investigated by the isolation and culture at different stages (myoblasts at day 1, myocytes at day 4, and myotubes at day 10) of rainbow trout muscle cells. This in vitro model avoids interactions with endogenous peptides, which could interfere with the muscle response. In these cells, the effects of IGF-I and insulin on cell proliferation, 2-deoxyglucose (2-DG), and l-alanine uptake at different development stages, and the use of inhibitors were studied and quantified. Insulin (10-1,000 nM) and IGF-I (10-100 nM) stimulated 2-DG uptake in trout myocytes at day 4 in a similar manner (maximum of 124% for insulin and of 142% for IGF-I), and this stimulation increased when cells differentiated to myotubes (maximum for IGF-I of 193%). When incubating the cells with PD-98059 and especially cytochalasin B, a reduction in 2-DG uptake was observed, suggesting that glucose transport takes place through specific facilitative transporters. IGF-I (1-100 nM) stimulated the l-alanine uptake in myocytes at day 4 (maximum of 239%), reaching higher values of stimulation than insulin (100-1,000 nM) (maximum of 160%). This stimulation decreased when cells developed to myotubes at day 10 (118% for IGF-I and 114% for insulin). IGF-I (0.125-25 nM) had a significant effect on myoblast proliferation, measured by thymidine incorporation (maximum of 170%), and required the presence of 2-5% fetal serum (FBS) to promote thymidine uptake. On the other hand, insulin was totally ineffective in stimulating thymidine uptake. We conclude that IGF-I is more effective than insulin in stimulating glucose and alanine uptake in rainbow trout myosatellite cells and that the degree of stimulation changes when cells differentiate to myotubes. IGF-I stimulates cell proliferation in this model of muscle in vitro and insulin does not. These results indicate the important role of IGF-I on growth and metabolism of fish muscle.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the most fundamental biological processes in living organisms that is affected by environmental fluctuations is growth. In fish, skeletal muscle accounts for the largest proportion of body mass, and the growth of this tissue is mainly controlled by the Insulin-like Growth Factor (IGF) system. By using the carp (Cyprinus carpio), a fish that inhabits extreme conditions during winter and summer, we assessed the skeletal muscle plasticity induced by seasonal acclimatization and the relation of IGF signaling with protein synthesis and ribosomal biogenesis. The expression of igf1 in muscle decreased during winter in comparison with summer, whereas the expression for both paralogues of igf2 did not change significantly between seasons. The expression of igf1 receptor a (igf1ra), but not of igf1rb, was down-regulated in muscle during the winter as compared to the summer. A decrease in protein contents and protein phosphorylation for IGF signaling molecules in muscle was observed in winter-acclimatized carp. This was related with a decreased expression in muscle for markers of myogenesis (myoblast determination factor (myod), myogenic factor 5 (myf5), and myogenin (myog)); protein synthesis (myosin heavy chain (mhc) and myosin light chain (mlc3 and mlc1b)); and ribosomal biogenesis (pre-rRNA and ribosomal proteins). IGF signaling, and key markers of ribosomal biogenesis, protein synthesis, and myogenesis were affected by seasonal acclimatization, with differential regulation in gene expression and signaling pathway activation observed in muscle between both seasons. This suggests that these molecules are responsible for the muscle plasticity induced by seasonal acclimatization in carp.
    Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology 10/2014; · 2.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscle growth and development is controlled by nutritional (amino acids, AA) as well as hormonal factors (insulin-like growth factor, IGF-I); however, how its interaction modulates muscle mass in fish is not clearly elucidated. The purpose of this study was to analyze the development of gilthead sea bream cultured myocytes to describe the effects of AA and IGF-I on proliferating cell nuclear antigen (PCNA) and myogenic regulatory factors (MRFs) expression, as well as on the transduction pathways involved in its signaling (TOR/AKT). Our results showed that AA and IGF-I separately increased the number of PCNA-positive cells and, together produced a synergistic effect. Furthermore, AA and IGF-I, combined or separately, increased significantly Myogenin protein expression, whereas MyoD was not affected. These results indicate a role for these factors in myocyte proliferation and differentiation. At the mRNA level, AA significantly enhanced PCNA expression, but no effects were observed on the expression of the MRFs or AKT2 and FOXO3 upon treatment. Nonetheless, we demonstrated for the first time in gilthead sea bream that AA significantly increased the gene expression of TOR and its downstream effectors 4EBP1 and 70S6K, with IGF-I having a supporting role on 4EBP1 up-regulation. Moreover, AA and IGF-I also activated TOR and AKT by phosphorylation, respectively, being this activation decreased by specific inhibitors. In summary, the present study demonstrates the importance of TOR signaling on the stimulatory role of AA and IGF-I in gilthead sea bream myogenesis and contributes to better understand the potential regulation of muscle growth and development in fish.
    General and Comparative Endocrinology 05/2014; · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Soybeans and other legumes investigated as fishmeal replacements in aquafeeds contain phytoestrogens capable of binding to and activating estrogen receptors. Estradiol has catabolic effects in salmonid white muscle, partially through increases in protein turnover. The current study determines whether phytoestrogens promote similar effects. In rainbow trout (Oncorhynchus mykiss) primary myocyte cultures, the phytoestrogens genistein, daidzein, glycitein, and R- and S-equol reduced rates of protein synthesis and genistein, the phytoestrogen of greatest abundance in soy, also increased rates of protein degradation. Increased expression of the ubiquitin ligase fbxo32 and autophagy-related genes was observed with high concentrations of genistein (100μM), and R- and S-equol (100μM) also up-regulated autophagy-related genes. In contrast, low genistein concentrations in vitro (0.01-0.10μM) and in vivo (5μg/g body mass) decreased fbxo32 expression, suggesting a potential metabolic benefit for low levels of genistein exposure. Phytoestrogens reduced cell proliferation, indicating effects of phytoestrogens extend from metabolic to mitogenic processes. Co-incubation of genistein with the estrogen receptor (ER) antagonist, ICI 182,780, ameliorated effects of genistein on protein degradation, but not protein synthesis or cell proliferation, indicating effects of genistein are mediated through ER-dependent and ER-independent mechanisms. Collectively, these data warrant additional studies to determine the extent to which dietary phytoestrogens, especially genistein, affect physiological processes that impact growth and nutrient retention.
    Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology 05/2014; · 2.71 Impact Factor


1 Download