AAV2 Vector Harboring a Liver-Restricted Promoter Facilitates Sustained Expression of Therapeutic Levels of a -Galactosidase A and the Induction of Immune Tolerance in Fabry Mice

Genzyme Corporation, 31 New York Avenue, Framingham, MA 01701-9322, USA.
Molecular Therapy (Impact Factor: 6.23). 03/2004; 9(2):231-40. DOI: 10.1016/j.ymthe.2003.11.015
Source: PubMed


The successful application of gene therapy for the treatment of genetic diseases such as Fabry is reliant on the development of vectors that are safe and that facilitate sustained expression of therapeutic levels of the transgene product. Here, we report that intravenous administration of a recombinant AAV2 vector encoding human alpha-galactosidase A under the transcriptional control of a liver-restricted enhancer/promoter (AAV2/DC190-alphagal) generated significantly higher levels of expression in BALB/c and Fabry mice than could be realized using the ubiquitous CMV promoter (AAV2/CMVHI-alphagal). Moreover, AAV2/DC190-alphagal-mediated hepatic expression of alpha-galactosidase A was sustained for 12 months in BALB/c mice and was associated with a significantly reduced immune response to the expressed enzyme. Subsequent challenge of the AAV2/DC190-alphagal-treated animals with recombinant human alpha-galactosidase A at 6 months failed to elicit the production of anti-alpha-galactosidase A antibodies, suggesting the induction of immune tolerance in these animals. The levels of expression attained with AAV2/DC190-alphagal in the Fabry mice were sufficient to reduce the abnormal accumulation of globotriaosylceramide in the liver, spleen, and heart to basal levels and in the kidney by approximately 40% at 8 weeks. Together, these results demonstrate that AAV2-mediated gene transfer that limits the expression of alpha-galactosidase A to the liver may be a viable strategy for treating Fabry disease.

Download full-text


Available from: Donna Armentano, May 26, 2014
23 Reads
  • Source
    • "Soluble IL17R/9gly/CH3 was cloned into plasmid pCBA(2) [43], which contains hybrid chicken beta-actin (CBA) promoter and bovine growth hormone polyadenylation signal sequence (BGH poly A). The expression cassette was transferred to pre-viral plasmid vector pAAVSP70 containing AAV2 inverted terminal repeats [44]. The recombinant vector AAV2.sIL17R was produced by triple transfection of 293 cells with pAAVSP70.sIL17R "
    [Show abstract] [Hide abstract]
    ABSTRACT: Age-related macular degeneration (AMD) is a common yet complex retinal degeneration that causes irreversible central blindness in the elderly. Pathology is widely believed to follow loss of retinal pigment epithelium (RPE) and photoreceptor degeneration. Here we report aberrant expression of interleukin-17A (IL17A) and the receptor IL17RC in the macula of AMD patients. In vitro, IL17A induces RPE cell death characterized by the accumulation of cytoplasmic lipids and autophagosomes with subsequent activation of pro-apoptotic Caspase-3 and Caspase-9. This pathology is reduced by siRNA knockdown of IL17RC. IL17-dependent retinal degeneration in a mouse model of focal retinal degeneration can be prevented by gene therapy with adeno-associated virus vector encoding soluble IL17 receptor. This intervention rescues RPE and photoreceptors in a MAPK-dependent process. The IL17 pathway plays a key role in RPE and photoreceptor degeneration and could hold therapeutic potential in AMD.
    PLoS ONE 04/2014; 9(4):e95900. DOI:10.1371/journal.pone.0095900 · 3.23 Impact Factor
  • Source
    • "No enzyme was detected in the PBS- and bortezomib-treated mice (Figure 4b). In contrast, mice that were naïve to any treatment showed abundant expression of α-galactosidase A following the administration of AAV2/8-DC190-alphaGal (Figure 4c), and levels were consistent with previous reports [16], [17]. Immunohistochemical staining for α-galactosidase A in liver sections showed similar results (Figure 4d). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pre-existing immunity against adeno-associated virus (AAV) remains a major challenge facing the clinical use of systemic administration of recombinant AAV vectors for the treatment of genetic and acquired diseases using gene therapy. In this study, we evaluated the potential of bortezomib (marketed under trade name Velcade) to abrogate a pre-existing immunity to AAV in mice, thereby allowing subsequent transduction by a recombinant AAV vector of the same serotype. We demonstrate that bortezomib efficiently reduces AAV-specific IgG titres and moderates the cytotoxic T cell response in mice that have a pre-existing immunity to AAV2/8. Significant depletion of AAV2/8-specific IgG-producing plasma cells in secondary lymphoid organs and bone marrow was observed. However, this inhibition of the immune response by bortezomib was insufficient to allow subsequent re-infection with a recombinant AAV vector of a similar serotype. We show that this shortcoming is probably due to the combination of residual antibody levels and the inability of bortezomib to completely deplete the memory B cells that are re-activated in response to a repeated infection with a recombinant AAV vector. Taken together, the results of this study argue for the use of immunosuppressive therapies that target both plasma and memory B cells for the efficient elimination of pre-existing immunity against AAV2/8 vectors.
    PLoS ONE 04/2012; 7(4):e34684. DOI:10.1371/journal.pone.0034684 · 3.23 Impact Factor
  • Source
    • "Specifically, systemically injected adenovirus has been used previously to endogenously express GLA in a Fabry mouse (Ziegler et al., 1999). Later, this group used both AAV2 (Ziegler et al., 2004) and AAV8 (Ziegler et al., 2007) to deliver GLA primarily to the liver, with impressive results. Exogenously produced GLA has been used for enzyme replacement in a Fabry mouse in preclinical studies (Ioannou et al., 2001), leading to the approval by the FDA of agalsidase beta for the treatment of Fabry disease in humans. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Fabry disease is caused by an X-linked deficiency of the lysosomal enzyme α-galactosidase A (GLA) and has been treated successfully with enzyme replacement therapy (ERT). Gene therapy has been proposed as an alternative to ERT due to the presumed advantages of continuous, endogenous production of the therapeutic enzyme. GLA production in the liver and its therapeutic efficacy in the Fabry mouse have been demonstrated previously with various viral vector systems. In consideration of the potential advantages of using the salivary glands as endogenous GLA biosynthesis sites, we explored the feasibility of this approach in the Fabry mouse. GLA -/0 or -/- mice received an adenoviral vector (2 × 10(10) or 1 × 10(9) viral particles) expressing GLA to the right submandibular gland via oral cannulation of the submandibular duct. Four days later, animals were sacrificed; saliva, plasma, kidney, liver, and brain were collected and assayed using ELISA, Western blot, and a GLA enzymatic activity assay using both traditional fluorescence methods and isotope dilution mass spectrometry by following the U.S. EPA Method 6800. GLA activity was significantly elevated in the serum and liver of both treatment groups, and improvement in the kidney was marginally significant (P < 0.069) in the high-dose group. Notably, we found that liver and salivary gland produce different glycoforms of the GLA transgene. Only small numbers of adenoviral genomes were observed in the livers of treated animals, but in four of 14 in the high-dose groups, liver levels of adenovirus exceeded 20 copies/μg, indicating that the sequestration in the salivary gland was imperfect at high doses. Taken together, these results indicate that the salivary gland-based gene therapy for Fabry disease is promising, and further studies with advanced viral vector gene delivery systems (e.g., adeno-associated virus) for long-term treatment appear to be warranted.
    Human gene therapy 03/2011; 22(3):293-301. DOI:10.1089/hum.2010.069 · 3.76 Impact Factor
Show more