Article

Identification of transcription factor binding sites upstream of human genes regulated by the phosphatidylinositol 3-kinase and MEK/ERK signaling pathways.

Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 06/2004; 279(19):20167-77. DOI: 10.1074/jbc.M309260200
Source: PubMed

ABSTRACT We have taken an integrated approach in which expression profiling has been combined with the use of small molecule inhibitors and computational analysis of transcription factor binding sites to characterize regulatory sequences of genes that are targets of specific signaling pathways in growth factor-stimulated human cells. T98G cells were stimulated with platelet-derived growth factor (PDGF) and analyzed by DNA microarrays, which identified 74 immediate-early gene transcripts. Cells were then treated with inhibitors to identify subsets of genes that are targets of the phosphatidylinositol 3-kinase (PI3K) and MEK/ERK signaling pathways. Four groups of PDGF-induced genes were defined: independent of PI3K and MEK/ERK signaling, dependent on PI3K signaling, dependent on MEK/ERK signaling, and dependent on both pathways. The upstream regions of all genes in the four groups were scanned using TRANSFAC for putative cis-elements as compared with a background set of non-induced genes. Binding sites for 18 computationally predicted transcription factors were over-represented in the four groups of co-expressed genes compared with the background sequences (p < 0.01). Many of the cis-elements identified were conserved in orthologous mouse genes, and many of the predicted elements and their cognate transcription factors were consistent with previous experimental data. In addition, chromatin immunoprecipitation assays experimentally verified nine predicted SRF binding sites in T98G cells, including a previously unknown SRF site upstream of DUSP5. These results indicate that groups of human genes regulated by discrete intracellular signaling pathways share common cis-regulatory elements.

0 Bookmarks
 · 
87 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Meiosis is essential for plant reproduction because it is the process during which homologous chromosome pairing, synapsis, and meiotic recombination occur. The meiotic transcriptome is difficult to investigate because of the size of meiocytes and the confines of anther lobes. The recent development of isolation techniques has enabled the characterization of transcriptional profiles in male meiocytes of Arabidopsis. Gene expression in male meiocytes shows unique features. The direct interaction of transcription factors (TFs) with DNA regulatory sequences forms the basis for the specificity of transcriptional regulation. Here, we identified putative cis-regulatory elements (CREs) associated with male meiocyte-expressed genes using in silico tools. The upstream regions (1 kb) of the top 50 genes preferentially expressed in Arabidopsis meiocytes possessed conserved motifs. These motifs are putative binding sites of TFs, some of which share common functions, such as roles in cell division. In combination with cell-type-specific analysis, our findings could be a substantial aid for the identification and experimental verification of the protein-DNA interactions for the specific TFs that drive gene expression in meiocytes.
    BioMed Research International 01/2014; 2014:708364. DOI:10.1155/2014/708364 · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BST-2 is a virus restriction factor whose expression is principally induced by IFNα through the type I IFN receptor. However, expression of BST-2 is modulated by mitogens, notably the TLR4 agonist - LPS, via mechanisms that are poorly understood. In this study, the role of TLR4 pathway on BST-2 expression was examined. We demonstrate that the TLR4/PI3K signaling pathway regulates both constitutive and LPS-induced BST-2 expression. LPS stimulation induces BST-2 expression in a manner dependent on TLR4/TRIF/IRF3 pathway. Genetic deletion or pharmacological inhibition of signaling through TLR4, as well as, the deletion of the TRIF and IRF3 genes blunts BST-2 induction by LPS. However, MYD88-/- cells have enhanced BST-2 levels and respond to LPS-mediated induction of BST-2. High level of BST-2 in MYD88 null cells is dependent on IFNβ since antibody-mediated neutralization of IFNβ synthesis results in reduced BST-2 levels in these cells. Similar to the effect of MYD88, inhibition of PI3K activity elevates basal BST-2 level and augments LPS-induced BST-2 expression. Importantly, BST-2 regulation via TLR4 and PI3K is transcriptionally controlled. We discovered that actinomycin D-mediated blocking of gene transcription and inhibition of protein synthesis with cycloheximide result in impairment of BST-2 mRNA expression. Taken together, our results demonstrate that activation of TLR4 results in TRIF/IRF3-mediated positive regulation of BST-2 or MYD88/PI3K-directed negative regulation of BST-2. Thus, our findings enlist BST-2 as one of the genes regulated by PI3K downstream of TLR4 and identify the TLR4/PI3K signaling as a novel pathway that controls BST-2 expression.
    Cellular Signalling 09/2013; DOI:10.1016/j.cellsig.2013.08.042 · 4.47 Impact Factor
  • Source

Preview

Download
3 Downloads