Diurnal changes in leaf gas exchange characteristics in the uppermost canopy of a rain forest tree, Dryobalanops aromatica Gaertn. f.

Forest Environment Division, Forestry and Forest Products Research Institute, P.O. Box 16, Tsukuba Norin Danchi, Ibaraki 305, Japan.
Tree Physiology (Impact Factor: 2.85). 10/1996; 16(9):779-85.
Source: PubMed

ABSTRACT Dryobalanops aromatica Gaertn. f. is a major tropical canopy species in lowland tropical rain forests in Peninsular Malaysia. Diurnal changes in net photosynthetic rate (A) and stomatal conductance to water vapor (g(s)) were measured in fully expanded young and old leaves in the uppermost canopy (35 m above ground). Maximum A was 12 and 10 micro mol m(-2) s(-1) in young and old leaves, respectively; however, because of large variation in A among leaves, mean maximum A in young and old leaves was only 6.6 and 5.5 micro mol m(-2) s(-1), respectively. Both g(s) and A declined in young leaves when T(leaf) exceeded 34 degrees C and leaf-to-air vapor pressure deficit (DeltaW) exceeded 0.025, whereas in old leaves, g(s) and A did not start to decline until T(leaf) and DeltaW exceeded 36 degrees C and 0.035, respectively. Under saturating light conditions, A was linearly related to g(s). The coefficient of variation (CV) for the difference between the CO(2) concentrations of ambient air and the leaf intercellular air space (C(a) - C(i)) was smaller than the CV for A or g(s), suggesting that maximum g(s) was mainly controlled by mesophyll assimilation (A/C(i)). Minimum C(i)/C(a) ratios were relatively high (0.72-0.73), indicating a small drought-induced stomatal limitation to A and non-conservative water use in the uppermost canopy leaves.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Measurements of leaf gas exchange at different photosynthetic photon flux density (PPFD) levels were conducted in order to compare the photosynthetic traits of five neotropical rainforest tree species, with a special emphasis on empirical mathematical models to estimate the light response curve parameters incorporating the effects of leaf-to-air vapour pressure deficit (D) on the saturated photosynthetic rate (Amax). All empirical mathematical models seemed to provide a good estimation of the light response parameters. Comparisons of the leaf photosynthetic traits between different species needed to select an appropriate model and indicated the microenvironmental conditions when the data were collected. When the vapour pressure deficit inside the chamber was not controlled, the incorporation of linear or exponencial functions that explained the effects of D on leaf gas exchange, was a very good method to enhance the performance of the models.
    Brazilian Archives of Biology and Technology 01/2005; 48(5). · 0.47 Impact Factor
  • Source
    K L Caudle, L C Johnson, S G Baer, B R Maricle
    [Show abstract] [Hide abstract]
    ABSTRACT: Leaf chlorophyll (Chl) concentration can be an indicator of plant health, including photosynthetic potential and nutrient status. In some cases, this measure can indicate the degree to which plants are water-stressed. Traditional methods of measuring Chl concentration have involved a destructive sampling technique: extraction and spectrophotometric analysis. A compatible nondestructive method to measure leaf Chl concentration exists and applies transmittance spectroscopy to plants with a Minolta SPAD-502 meter. These techniques were evaluated by comparing leaf Chl concentration in big bluestem (Andropogon gerardii). Leaves were sampled from plants representing three ecotypes (originating from Central Kansas, Eastern Kansas, and Illinois, USA) and two cultivars of A. gerardii growing in Hays, Kansas, USA. Leaf Chl concentration was measured using nondestructive and destructive techniques. We documented a saturating relationship between destructively measured leaf Chl concentration and SPAD index resulting from a decelerating change in SPAD index as Chl concentration increased. The comparison of A. gerardii ecotypes and cultivars demonstrated highest Chl concentration in the ecotype and cultivar from areas with historically low precipitation, Central Kansas and A. gerardii var. hallii, respectively. A high ratio of Chl a to Chl b is an index of drought adaptation and was also manifested in A. gerardii from drier regions. Thus, drought-adapted ecotypes and cultivars might be able to maintain high photosynthetic productivity and protect photosystem II during dry periods. Conversely, the ecotypes and cultivar originating from areas with higher precipitation had lower leaf Chl and a lower Chl a/b ratio.
    Photosynthetica 10/2014; · 0.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To elucidate whether dipterocarp species, dominant late-successional species of tropical forests in Southeast Asia, actually have a disadvantage when planted on open site in terms of their photosynthetic characteristics, we investigated photosynthesis in dipterocarp seedlings planted in the open on degraded sandy soils in southern Thailand. These species were compared with seedlings of Acacia mangium Willd., a fast-growing tropical leguminous tree, which is often planted on degraded open site in Southeast Asia. The dipterocarp seedlings had an irradiance-saturated net photosynthetic rate (P N), stomatal conductance (g s), carboxylation efficiency, and photosynthetic capacity comparable to or superior to those of A. mangium. In particular, seedlings of Dipterocarpus obtusifolius Teijsm. ex Miq. showed an irradian-ce-saturated P N of 21 µmol m−2 s−1, a value higher than any previously reported for a dipterocarp species, accompanied by high g s (0.7 mol m−2 s−1) and high photosynthetic capacity. Thus dipterocarp species do not necessarily have a disadvantage in terms of their photosynthetic characteristics on open sites with degraded sandy soils.
    Photosynthetica 11/2005; 43(4):491-499. · 0.86 Impact Factor


1 Download
Available from