Article

Development of an in vitro blood-brain barrier model-cytotoxicity of mercury and aluminum.

University of Tampere, Medical School, 33014 University of Tampere, Tampere, Finland.
Toxicology and Applied Pharmacology (Impact Factor: 3.98). 03/2004; 195(1):73-82. DOI: 10.1016/j.taap.2003.11.002
Source: PubMed

ABSTRACT In this study, in vitro blood-brain barrier (BBB) models composed of two different cell types were compared. The aim of our study was to find an alternative human cell line that could be used in BBB models. Inorganic and organic mercury and aluminum were studied as model chemicals in the testing of the system. BBB models were composed of endothelial RBE4 cell line or retinal pigment epithelial (RPE) cell line ARPE-19 and neuronal SH-SY5Y cells as target cells. Glial U-373 MG cells were included in part of the tests to induce the formation of a tighter barrier. Millicell CM filter inserts were coated with rat-tail collagen, and RBE4 or ARPE-19 cells were placed on the filters at the density of 3.5-4 x 10(5) cells/filter. During culture, the state of confluency was microscopically observed and confirmed by the measurement of electrical resistance caused by the developing cell layer. The target cells, SH-SY5Y neuroblastoma cells, were plated on the bottom of cell culture wells at the density of 100000 cells/cm(2). In part of the studies, glial U-373 MG cells were placed on the under side of the membrane filter. When confluent filters with ARPE-19 or RBE4 cells were placed on top of the SH-SY5Y cells, different concentrations of mercuric chloride, methyl mercury chloride, and aluminum chloride were added into the filter cups along with a fluorescent tracer. Exposure time was 24 h, after which the cytotoxicity in the SH-SY5Y cell layer, as well as in the ARPE-19 or RBE4 cell layer, was evaluated by the luminescent measurement of total ATP. The leakage of the fluorescent tracer was also monitored. The results showed that both barrier cell types were induced by glial cells. Inorganic and organic mercury caused a leakage of the dye and cytotoxicity in SH-SY5Y cells. Especially, methyl mercury chloride could exert an effect on target cells before any profound cytotoxicity in barrier cells could be seen. Aluminum did not cause any leakage in the barrier cell layer, and even the highest concentration (1 mM) of aluminum did not cause any cytotoxicity in the SH-SY5Y cells. In conclusion, BBB models composed of RBE4 and ARPE-19 cells were able to distinguish between different toxicities, and ARPE-19 cells are thus promising candidates for studies of drug penetration through the blood-brain barrier.

0 Bookmarks
 · 
79 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report for the first time on the comparative use of pulsed-plasma gas-discharge (PPGD) and pulsed UV light (PUV) for the novel destruction of the waterborne enteroparasite Cryptosporidium parvum. It also describes the first cyto-, geno- and ecotoxicological assays undertaken to assess the safety of water decontaminated using PPGD and PUV. During PPGD treatments, the application of high voltage pulses (16 kv, 10 pps) to gas-injected water (N2 or O2, flow rate 2.5 L/min) resulted in the formation of a plasma that generated free radicals, ultraviolet light, acoustic shock waves and electric fields that killed ca. 4 log C. parvum oocysts in 32 min exposure. Findings showed that PPGD-treated water produced significant cytotoxic properties (as determined by MTT and neutral red assays), genotoxic properties (as determined by comet and Ames assays), and ecotoxic properties (as determined by Microtox(TM), Thamnotox(TM) and Daphnotox(TM) assays) that are representative of different trophic levels in aquatic environment (P < 0.05). Depending in part on the type of injected gas used, PPGD-treated water became either alkaline (pH ≤8.58, using O2) or acidic (pH ≥3.21, using N2) and contained varying levels of reactive free radicals such as ozone (0.8 mg/L) and/or dissociated nitric and nitrous acid that contributed to the observed disinfection and toxicity. Chemical analysis of PPGD-treated water revealed increasing levels of electrode metals that were present at ≤ 30 times the tolerated respective values for EU drinking water. PUV-treated water did not exhibit any toxicity and was shown to be far superior to that of PPGD for killing C. parvum oocysts taking only 90s of pulsing [UV dose of 6.29μJ/cm(2)] to produce a 4-log reduction compared to a similar reduction level achieved after 32 min PPGD treatment as determined by combined in vitro CaCo-2 cell culture-qPCR.
    Journal of microbiological methods 07/2013; · 2.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The blood-brain barrier (BBB) maintains the brain homeostasis and dynamically responds to events associated with systemic and/or rheological impairments (e.g., inflammation, ischemia) including the exposure to harmful xenobiotics. Thus, understanding the BBB physiology is crucial for the resolution of major central nervous system CNS) disorders challenging both health care providers and the pharmaceutical industry. These challenges include drug delivery to the brain, neurological disorders, toxicological studies, and biodefense. Studies aimed at advancing our understanding of CNS diseases and promoting the development of more effective therapeutics are primarily performed in laboratory animals. However, there are major hindering factors inherent to in vivo studies such as cost, limited throughput and translational significance to humans. These factors promoted the development of alternative in vitro strategies for studying the physiology and pathophysiology of the BBB in relation to brain disorders as well as screening tools to aid in the development of novel CNS drugs. Herein, we provide a detailed review including pros and cons of current and prospective technologies for modelling the BBB in vitro including ex situ, cell based and computational (in silico) models. A special section is dedicated to microfluidic systems including micro-BBB, BBB-on-a-chip, Neurovascular Unit-on-a-Chip and Synthetic Microvasculature Blood-brain Barrier.
    Pharmaceutical Research 08/2014; · 4.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In consideration of organ motion, we propose a new method by which to discriminate motion patterns and to detect the 2D motion field simultaneously using ultrasonography and respiratory signals. In the proposed method, we use discrete MRFs to represent localization of same motion regions. Similarity of motion is defined as equality of the regression coefficients between the motion and the respiration. A computationally stable algorithm is constructed using the EM algorithm strategy, and the effectiveness of the method is confirmed through real image experiments.
    01/2003;