Article

Tumor necrosis factor: an apoptosis JuNKie?

Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
Cell (Impact Factor: 33.12). 03/2004; 116(4):491-7.
Source: PubMed

ABSTRACT TNF's main function is to stimulate inflammation by turning on gene transcription through the IKK/NFkappaB and JNK/AP-1 signaling cascades. TNF also can trigger apoptosis through caspase-8, but the role and underlying mechanism of this activity are not fully understood. Here, we review recent data on the role of JNK in the regulation of TNF-dependent apoptosis and discuss what is known so far about how cells decide whether to live or die in response to TNF.

Full-text

Available from: Avi Ashkenazi, Jun 02, 2015
0 Followers
 · 
269 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The c-Jun N-terminal kinase (JNK) pathway plays essential roles in regulating a variety of cellular processes including proliferation, migration and survival. Previous genetic studies in Drosophila have identified numerous cell death regulating genes, providing new insights into the mechanisms for related diseases. Despite the known role of the small GTPase Rac1 in regulating cell death, the downstream components and underlying mechanism remain largely elusive. Here, we show that Rac1 promotes JNK-dependent cell death through Wallenda (Wnd). In addition, we find that Wnd triggers JNK activation and cell death via its kinase domain. Moreover, we show that both MKK4 and Hep are critical for Wnd-induced cell death. Furthermore, Wnd is essential for ectopic Egr- or Rho1-induced JNK activation and cell death. Finally, Wnd is physiologically required for loss of scribble-induced JNK-dependent cell death. Thus, our data suggest that wnd encodes a novel essential cell death regulator in Drosophila.
    Cell Death & Disease 05/2015; 6(5):e1737. DOI:10.1038/cddis.2015.111 · 5.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MTCH2 has been described in liver as a protein involved in the intrinsic apoptotic pathway, although new evidence also associates this protein with cellular metabolism. In this work, the expression of MTCH2 in testis (an organ in which high levels of apoptosis normally take place as part of the spermatogenic process) is analyzed in rat, both at the mRNA and at the protein levels. Our results showed that MTCH2 was highly expressed in testis compared with other tissues and was differentially expressed according to developmental stage and testicular cell type. Protein expression was initially detected during the first spermatogenic wave at the time of meiosis onset and its levels increased in adulthood, with the highest expression levels being detected in meiotic prophase I. Specific differences in MTCH2 expression levels at the various stages of the adult seminiferous epithelium were also observed. Co-staining with TUNEL revealed a differential MTCH2 staining pattern in TUNEL-positive cells, mainly in dying primary spermatocytes, i.e., meiotic prophase I cells. Furthermore, upon mild hyperthermia (treatment shown to increase apoptosis in testis), MTCH2 levels rose concomitantly with a massive appearance of TUNEL-positive cells within the seminiferous tubules; these cells exhibited a differential MTCH2 distribution. Thus, MTCH2 is related to testicular apoptosis, especially during meiotic prophase.
    Cell and Tissue Research 03/2015; DOI:10.1007/s00441-015-2163-2 · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Iron contributes to c-Jun N-terminal kinases (JNK) activation in young rats and white matter injury in piglets after intracerebral hemorrhage (ICH). In the present study, we examined the effect of deferoxamine on ICH-induced white matter injury and JNK activation and in aged rats. Male Fischer 344 rats (18months old) had either an intracaudate injection of 100μl of autologous blood or a needle insertion (sham). The rats were treated with deferoxamine or vehicle with different regimen (dosage, duration and time window). White matter injury and activation of JNK were examined. We found that a dose of DFX should at more than 10mg/kg for a therapeutic duration more than 2days with a therapeutic time window of 12hours to reduce ICH-induced white matter loss at 2months. ICH-induced white matter injury was associated with JNK activation. The protein levels of phosphorylated-JNK (P-JNK) were upregulated at day-1 after ICH and then gradually decreased. P-JNK immunoreactivity was mostly located in white matter bundles. ICH-induced JNK activation was reduced by DFX treatment. This study demonstrated that DFX can reduce ICH-induced JNK activation and white matter damage. Copyright © 2015. Published by Elsevier Inc.
    Experimental Neurology 03/2015; DOI:10.1016/j.expneurol.2015.02.035 · 4.62 Impact Factor