Camara, A.A. et al. Risk factors for wheezing in a subtropical environment: role of respiratory viruses and allergen sensitization. J. Allergy Clin. Immunol. 113,, 551-557

University of São Paulo, San Paulo, São Paulo, Brazil
Journal of Allergy and Clinical Immunology (Impact Factor: 11.48). 04/2004; 113(3):551-7. DOI: 10.1016/j.jaci.2003.11.027
Source: PubMed


Risk factors for acute wheezing among children in subtropical areas are largely unknown.
To investigate the role of viral infections, allergen sensitization, and exposure to indoor allergens as risk factors for acute wheezing in children 0 to 12 years old.
One hundred thirty-two children 0 to 12 years of age who sought emergency department care for wheezing and 65 children with no history of wheezing were enrolled in this case-control study. Detection of respiratory syncytial virus antigen, rhinovirus and coronavirus RNA, adenovirus, influenza, and parainfluenza antigens was performed in nasal washes. Total IgE and specific IgE to mites, cockroach, cat, and dog were measured with the CAP system. Major allergens from mites, cockroach, cat, and dog were quantified in dust samples by ELISA. Univariate and multivariate analyses were performed by logistic regression.
In children under 2 years of age, infection with respiratory viruses and family history of allergy were independently associated with wheezing (odds ratio, 15.5 and 4.2; P = .0001 and P = .008, respectively). Among children 2 to 12 years old, sensitization to inhalant allergens was the major risk factor for wheezing (odds ratio, 2.7; P = .03). High-level allergen exposure, exposure to tobacco smoke, and lack of breast-feeding showed no association with wheezing.
Some risk factors for wheezing previously identified in temperate climates were present in a subtropical area, including respiratory syncytial virus infection in infants and allergy in children older than 2 years. Rhinovirus was not associated with wheezing and did not appear to be a trigger for asthma exacerbations.

Download full-text


Available from: Virginia Ferriani,
1 Follower
44 Reads
  • Source
    • "The profile of HRVs has been raised as a result of widening use of sensitive molecular methods of detection compared with in vitro cultivation [Kammerer et al., 1994; Arruda et al., 1997; Pitkaranta et al., 1997; Andeweg et al., 1999; Vesa et al., 2001; Renwick et al., 2007], with an increase in the observations of association with lower respiratory tract infection [Lamson et al., 2006; Lau et al., 2007, 2009; Khetsuriani et al., 2008; McErlean et al., 2008; Linsuwanon et al., 2009; Piralla et al., 2009]. A number of other studies have suggested that respiratory illness, presenting with wheezing, rales and respiratory distress may be associated with HRVs [Camara et al., 2004; Cheuk et al., 2007; Singh et al., 2007; Miller et al., 2007b, 2009]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This study reports pediatric surveillance over 3 years for human rhinovirus (HRV) at the District Hospital of Kilifi, coastal Kenya. Nasopharyngeal samples were collected from children presenting at outpatient clinic with no signs of acute respiratory infection, or with signs of upper respiratory tract infection, and from children admitted to the hospital with lower respiratory tract infection. Samples were screened by real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR) and classified further to species by nucleotide sequencing of the VP4/VP2 junction. Of 441 HRV positives by real-time RT-PCR, 332 were classified to species, with 47% (155) being HRV-A, 5% (18) HRV-B, and 48% (159) HRV-C. There was no clear seasonal pattern of occurrence for any species. The species were present in similar proportions in the inpatient and outpatient sample sets, and no significant association between species distribution and the severity of lower respiratory tract infection in the inpatients could be determined. HRV sequence analysis revealed multiple but separate clusters in circulation particularly for HRV-A and HRV-C. Most HRV-C clusters were distinct from reference sequences downloaded from GenBank. In contrast, most HRV-A and HRV-B sequences clustered with either known serotypes or strains from elsewhere within Africa and other regions of the world. This first molecular epidemiological study of HRV in the region defines species distribution in accord with reports from elsewhere in the world, shows considerable strain diversity and does not identify an association between any species and disease severity.
    Journal of Medical Virology 05/2012; 84(5):823-31. DOI:10.1002/jmv.23251 · 2.35 Impact Factor
  • Source
    • "Considering that 12% of children of this cohort attended a hospital with bronchiolitis, one explanation of our findings is the effect of viral diseases, as has been shown in other studies from Latin America [19]. In fact, bronchiolitis was a high risk factor for wheezing in our cohort, with odds ratio similar to that found when laboratory diagnosis of viral infection was done [49]. Lower respiratory tract infections by Respiratory Syncytial Virus (RSV) are common in tropical developing countries causing 27 to 96% of all acute wheezing hospitalizations in children under 6 month of age [50]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Early wheezing and asthma are relevant health problems in the tropics. Mite sensitization is an important risk factor, but the roles of others, inherent in poverty, are unknown. We designed a birth-cohort study in Cartagena (Colombia) to investigate genetic and environmental risk factors for asthma and atopy, considering as particular features perennial exposure to mites, parasite infections and poor living conditions. Pregnant women representative of the low-income suburbs of the city were randomly screened for eligibility at delivery; 326 mother-infant pairs were included at baseline and biological samples were collected from birth to 24 months for immunological testing, molecular genetics and gene expression analysis. Pre and post-natal information was collected using questionnaires. 94% of families were from the poorest communes of the city, 40% lacked sewage and 11% tap-water. Intestinal parasites were found as early as 3 months; by the second year, 37.9% of children have had parasites and 5.22% detectable eggs of Ascaris lumbricoides in stools (Median 3458 epg, IQR 975-9256). The prevalence of "wheezing ever" was 17.5% at 6 months, 31.1% at 12 months and 38.3% at 24 months; and recurrent wheezing (3 or more episodes) 7.1% at 12 months and 14.2% at 24 months. Maternal rhinitis [aOR 3.03 (95%CI 1.60-5.74), p = 0.001] and male gender [aOR 2.09 (95%CI 1.09 - 4.01), p = 0.026], increased risk for wheezing at 6 months. At 24 months, maternal asthma was the main predisposing factor for wheezing [aOR 3.65 (95%CI 1.23-10.8), p = 0.01]. Clinical symptoms of milk/egg allergy or other food-induced allergies were scarce (1.8%) and no case of atopic eczema was observed. Wheezing is the most frequent phenotype during the first 24 months of life and is strongly associated with maternal asthma. At 24 months, the natural history of allergic symptoms is different to the "atopic march" described in some industrialized countries. This cohort is representative of socially deprived urban areas of underdeveloped tropical countries. The collection of biological samples, data on exposure and defined phenotypes, will contribute to understand the gene/environment interactions leading to allergy inception and evolution.
    BMC Pulmonary Medicine 03/2012; 12(1):13. DOI:10.1186/1471-2466-12-13 · 2.40 Impact Factor
  • Source
    • "A low prevalence rate was not unexpected in the children sampled who were between 2 – 16 years as RSV infection is highest below the age of 2 years [34]. The significant lower prevalence of other respiratory viruses in the asthmatic children has been reported in other investigations [6,7,14]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Childhood asthma in the Caribbean is advancing in prevalence and morbidity. Though viral respiratory tract infections are reported triggers for exacerbations, information on these infections with asthma is sparse in Caribbean territories. We examined the distribution of respiratory viruses and their association with seasons in acute and stable asthmatic children in Trinidad. In a cross-sectional study of 70 wheezing children attending the emergency department for nebulisation and 80 stable control subjects (2 to 16 yr of age) in the asthma clinic, nasal specimens were collected during the dry (n = 38, January to May) and rainy (n = 112, June to December) seasons. A multitarget, sensitive, specific high-throughput Respiratory MultiCode assay tested for respiratory-virus sequences for eight distinct groups: human rhinovirus, respiratory syncytial virus, parainfluenza virus, influenza virus, metapneumovirus, adenovirus, coronavirus, and enterovirus. Wheezing children had a higher [chi(2 )= 5.561, p = 0.018] prevalence of respiratory viruses compared with stabilized asthmatics (34.3% (24) versus (vs.) 17.5% (14)). Acute asthmatics were thrice as likely to be infected with a respiratory virus (OR = 2.5, 95% CI = 1.2 - 5.3). The predominant pathogens detected in acute versus stable asthmatics were the rhinovirus (RV) (n = 18, 25.7% vs. n = 7, 8.8%; p = 0.005), respiratory syncytial virus B (RSV B) (n = 2, 2.9% vs. n = 4, 5.0%), and enterovirus (n = 1, 1.4% vs. n = 2, 2.5%). Strong odds for rhinoviral infection were observed among nebulised children compared with stable asthmatics (p = 0.005, OR = 3.6, 95% CI = 1.4 - 9.3,). RV was prevalent throughout the year (Dry, n = 6, 15.8%; Rainy, n = 19, 17.0%) and without seasonal association [chi(2 )= 0.028, p = 0.867]. However it was the most frequently detected virus [Dry = 6/10, (60.0%); Rainy = 19/28, (67.9%)] in both seasons. Emergent wheezing illnesses during childhood can be linked to infection with rhinovirus in Trinidad's tropical environment. Viral-induced exacerbations of asthma are independent of seasons in this tropical climate. Further clinical and virology investigations are recommended on the role of infections with the rhinovirus in Caribbean childhood wheeze.
    Italian Journal of Pediatrics 07/2009; 35(1):16. DOI:10.1186/1824-7288-35-16 · 1.52 Impact Factor
Show more