Article

Properties of horizontal semicircular canal nerve-activated vestibulospinal neurons in cats.

Department of Otolaryngology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, 216-8511 Kanagawa, Japan.
Experimental Brain Research (Impact Factor: 2.22). 07/2004; 156(4):478-86. DOI: 10.1007/s00221-003-1805-x
Source: PubMed

ABSTRACT Axonal pathways, projection levels, and locations of horizontal semicircular canal (HC) nerve-activated vestibulospinal neurons were studied. The HC nerve was selectively stimulated. Vestibulospinal neurons were activated antidromically with four stimulating electrodes, inserted bilaterally into the lateral vestibulospinal tracts (LVST) and medial vestibulospinal tracts (MVST) at the C1/C2 junction. Stimulating electrodes were also positioned in the C3, T1, and L3 segments and in the oculomotor nuclei. Most HC nerve-activated vestibulospinal neurons were located in the ventral portion of the medial, lateral, and the descending nuclei. Among the 157 HC nerve-activated vestibular neurons, 83 were antidromically activated by stimulation at the C1/C2 junction. Of these 83 neurons, axonal pathways of 56 HC nerve-activated vestibulospinal neurons were determined. Most (48/56) of these had axons that descended through the MVST, with the remainder (8 neurons) having axons that descended through the ipsilateral (i-) LVST. Laterality of the axons' trajectories through the MVST was investigated. The majority of vestibulospinal neurons (24/28) with axons descending through the contralateral MVST were also antidromically activated from the oculomotor nucleus, whereas almost all vestibulospinal neurons (19/20) with axons descending through the i-MVST were not. Most HC nerve-activated vestibulospinal neurons were activated antidromically only from the C1/C2 or C3 segments. Only one neuron that was antidromically activated from the T1 segment had an axon that descended through the i-LVST. None of the HC nerve-activated vestibulospinal neurons were antidromically activated from the L3 segment. It is likely that the majority of HC nerve-activated vestibulospinal neurons terminate in the cervical cord and have strong connections with neck motoneurons.

0 Bookmarks
 · 
83 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We wanted to explore the specific proprioceptive effect of cervical pain on sensorimotor control. Sensorimotor control comprises proprioceptive feedback, central integration and subsequent muscular response. Pain might be one cause of previously reported disturbances in joint kinematics, head on trunk orientation and postural control. However, the causal relationship between the impact of cervical pain on proprioception and thus on sensorimotor control has to be established. Eleven healthy subjects were examined in their ability to reproduce two different head on trunk targets, neutral head position (NHP) and 30° target position, with a 3D motion analyser before, directly after and 15 min after experimentally induced neck pain. Pain was induced by hypertonic saline infusion at C2/3 level in the splenius capitis muscle on one side (referred to as "injected side"). All subjects experienced temporary pain and the head repositioning error increased significantly during head repositioning to the 30° target to the injected side (p = 0.011). A post hoc analysis showed that pain interfered with proprioception to the injected side during acute pain (p < 0.001), but also when the pain had waned (p = 0.002). Accuracy decreased immediately after pain induction for the 30° target position to the side where pain was induced (3.3 → 5.3°, p = 0.033), but not to the contralateral side (4.9 → 4.1°, p = 0.657). There was no significant impact of pain on accuracy for NHP. A sensory mismatch appeared in some subjects, who experienced dizziness. Acute cervical pain distorts sensorimotor control with side-specific changes, but also has more complex effects that appear when pain has waned.
    Arbeitsphysiologie 06/2013; · 2.66 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Synthetic lethal screening is a chemical biology approach to identify small molecules that selectively kill oncogene-expressing cell lines with the goal of identifying pathways that provide specific targets against cancer cells. We performed a high-throughput screen of 303,282 compounds from the National Institutes of Health-Molecular Libraries Small Molecule Repository (NIH-MLSMR) against immortalized BJ fibroblasts expressing HRAS(G12V) followed by a counterscreen of lethal compounds in a series of isogenic cells lacking the HRAS(G12V) oncogene. This effort led to the identification of two novel molecular probes (PubChem CID 3689413, ML162 and CID 49766530, ML210) with nanomolar potencies and 4-23-fold selectivities, which can potentially be used for identifying oncogene-specific pathways and targets in cancer cells.
    Bioorganic & medicinal chemistry letters 02/2012; 22(4):1822-6. · 2.65 Impact Factor

Full-text

Download
0 Downloads
Available from