Article

LIM kinase 1, a key regulator of actin dynamics, is widely expressed in embryonic and adult tissues.

Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, PO The Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia.
Experimental Cell Research (Impact Factor: 3.56). 05/2004; 294(2):392-405. DOI: 10.1016/j.yexcr.2003.11.024
Source: PubMed

ABSTRACT The expression of endogenous LIM kinase 1 (LIMK1) protein was investigated in embryonic and adult mice using a rat monoclonal antibody (mAb), which recognizes specifically the PDZ domain of LIMK1 and not LIMK2. Immunoblotting analysis revealed widespread expression of LIMK1 existing as a 70-kDa protein in tissues and in cell lines, with a higher mass form (approximately 75 kDa) present in some tissues and cell lines. Smaller isoforms of approximately 50 kDa were also occasionally evident. Immunofluorescence analysis demonstrated LIMK1 subcellular localization at focal adhesions in fibroblasts as revealed by co-staining with actin, paxillin and vinculin in addition to perinuclear (Golgi) and occasional nuclear localization. Furthermore, an association between LIMK1 and paxillin but not vinculin was identified by co-immunoprecipitation analysis. LIMK1 is enriched in both axonal and dendritic growth cones of E18 rat hippocampal pyramidal neurons where it is found in punctae that extend far out into filopodia, as well as in a perinuclear region identified as Golgi. In situ, we identify LIMK1 protein expression in all embryonic and adult tissues examined, albeit at different levels and in different cell populations. The rat monoclonal LIMK1 antibody recognizes proteins of similar size in cell and tissue extracts from numerous species. Thus, LIMK1 is a widely expressed protein that exists as several isoforms.

0 Bookmarks
 · 
61 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metal-organic frameworks (MOFs) are newly emerging porous materials. Owing to their large surface area and tunable pore size and geometry, they have been studied for applications in gas storage and separation, especially in hydrogen and methane storage and carbon dioxide capture. It has been well established that the high-pressure gravimetric hydrogen-adsorption capacity of an MOF is directly proportional to its surface area. However, MOFs of high surface areas tend to decompose upon activation. In our previous work, we described an approach toward stable MOFs with high surface areas by incorporating mesocavities with microwindows. To extend this work, we now present an isoreticular series of (3,24)-connected MOFs made from dendritic hexacarboxylate ligands, one of which has a Langmuir surface area as high as 6033 m² g¹. In addition, the gas-adsorption properties of this new isoreticular MOF series have been studied.
    Angewandte Chemie International Edition 07/2010; 49(31):5357-61. · 11.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously provided evidence that cadherin-6B induces de-epithelialization of the neural crest prior to delamination and is required for the overall epithelial mesenchymal transition (EMT). Furthermore, de-epithelialization induced by cadherin-6B was found to be mediated by BMP receptor signaling independent of BMP. We now find that de-epithelialization is mediated by non-canonical BMP signaling through the BMP type II receptor (BMPRII) and not by canonical Smad dependent signaling through BMP Type I receptor. The LIM kinase/cofilin pathway mediates non-canonical BMPRII induced de-epithelialization, in response to either cadherin-6B or BMP. LIMK1 induces de-epithelialization in the neural tube and dominant negative LIMK1 decreases de-epithelialization induced by either cadherin-6B or BMP. Cofilin is the major known LIMK1 target and a S3A phosphorylation deficient mutated cofilin inhibits de-epithelialization induced by cadherin-6B as well as LIMK1. Importantly, LIMK1 as well as cadherin-6B can trigger ectopic delamination when co-expressed with the competence factor SOX9, showing that this cadherin-6B stimulated signaling pathway can mediate the full EMT in the appropriate context. These findings suggest that the de-epithelialization step of the neural crest EMT by cadherin-6B/BMPRII involves regulation of actin dynamics via LIMK/cofilin.
    Developmental Biology 04/2012; 366(2):232-43. · 3.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metastasis is the major cause of morbidity and mortality in cancer patients. An understanding of the genes that regulate metastasis and development of therapies to target these genes is needed urgently. Since members of the LIM kinase (LIMK) family are key regulators of the actin cytoskeleton and are involved in cell motility and invasion, LIMK is considered to be a good therapeutic target for metastatic disease. Here we investigated the consequences of LIMK inhibition on growth and metastasis of human and mouse mammary tumors. LIMK activity was reduced in tumor cells by expression of dominant-negative LIMK1, by RNA interference or with a selective LIMK inhibitor. The extent of phosphorylation of the LIMK substrate, cofilin, of proliferation and invasion in 2D and 3D culture and of tumor growth and metastasis in mice were assessed. Inhibition of LIMK activity efficiently reduced the pro-invasive properties of tumor cells in vitro. Tumors expressing dominant-negative LIMK1 grew more slowly and were less metastatic in mice. However, systemic administration of a LIMK inhibitor did not reduce either primary tumor growth or spontaneous metastasis. Surprisingly, metastasis to the liver was increased after administration of the inhibitor. These data raise a concern about the use of systemic LIMK inhibitors for the treatment of metastatic breast cancer.
    Clinical and Experimental Metastasis 12/2012; · 3.46 Impact Factor