Article

Resonance Raman spectra of electrons solvated in liquid alcohols.

Department of Chemistry, University of California, Berkeley, California 94720, USA.
Journal of the American Chemical Society (Impact Factor: 10.68). 04/2004; 126(11):3414-5. DOI: 10.1021/ja031816d
Source: PubMed

ABSTRACT Resonance Raman spectra of electrons solvated in liquid methanol, ethanol, and n-propanol are presented. At least five distinct solvent modes exhibit resonantly enhanced scattering, including the OH torsion, CO/CC stretches, the OH in-plane bend, methyl deformations, and the OH stretch. The 200-350 cm-1 frequency downshift of the OH stretch indicates a strong H-bond interaction between the electron and the hydroxyl group. The multiple modes including alkyl vibrations that are coupled to the electronic transition of the solvated electron reveal the extension of the electron's wavefunction into the alkyl solvent environment.

0 Bookmarks
 · 
59 Views
  • Chemistry Letters - CHEM LETT. 01/2010; 39(7):668-670.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dynamics of electron solvation following excitation of the charge-transfer-to-solvent precursor state in iodide-doped methanol clusters, I(-)(CH(3)OH)(n = 4-11), are studied with time-resolved photoelectron imaging. This excitation produces a I···(CH(3)OH)(n)(-) cluster that is unstable with respect to electron autodetachment and whose autodetachment lifetime increases monotonically from ~800 fs to 85 ps as n increases from 4 to 11. The vertical detachment energy (VDE) and width of the excited state feature in the photoelectron spectrum show complex time dependence during the lifetime of this state. The VDE decreases over the first 100-400 fs, then rises exponentially to a maximum with a ~1 ps time constant, and finally decreases by as much as 180 meV with timescales of 3-20 ps. The early dynamics are associated with electron transfer from the iodide to the methanol cluster, while the longer-time changes in VDE are attributed to solvent reordering, possibly in conjunction with ejection of neutral iodine from the cluster. Changes in the observed width of the spectrum largely follow those of the VDEs; the dynamics of both are attributed to the major rearrangement of the solvent cluster during relaxation. The relaxation dynamics are interpreted as a reorientation of at least one methanol molecule and the disruption and formation of the solvent network in order to accommodate the excess charge.
    The Journal of Chemical Physics 03/2011; 134(12):124311. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Various single-standed DNA-encapsulated Ag nanoclusters (nanodots) exhibit strong, discrete fluorescence with solvent polarity-dependent absorption and emission throughout the visible and near-IR. All species examined, regardless of their excitation and emission energies, show similar µs single-molecule blinking dynamics and near IR transient absorptions. The polarity dependence, µsec blinking, and indistinguishable µsec-decaying transient absorption spectra for multiple nanodots suggest a common charge transfer-based mechanism that gives rise to nanodot fluorescence intermittency. Photoinduced charge transfer that is common to all nanodot emitters is proposed to occur from the Ag cluster into the nearby DNA bases to yield a long-lived charge-separated trap state that results in blinking on the single molecule level.
    The Journal of Physical Chemistry C 11/2009; 113(47):20264-20270. · 4.84 Impact Factor