Ultrastructure of the midgut endocrine cells in Melipona quadrifasciata anthidioides (Hymenoptera, Apidae).

Universidade Federal do Rio de Janeiro, Brazil.
Brazilian Journal of Biology (Impact Factor: 0.64). 12/2003; 63(4):683-90. DOI: 10.1590/S1519-69842003000400015
Source: PubMed

ABSTRACT In this study we describe the ultrastructure of the endocrine cells observed in the midgut of M. quadrifasciata anthidioides. This bee has two types of endocrine cells, which are numerous on the posterior midgut region. Cells of the closed type are smaller and have irregular secretory granules with lower electrondensity than those of the open cell type. The open cell type has elongated mitochondria mainly on the basal area, where most of the secretory granules are also found. Besides the secretion granules and mitochondria, endocrine cells in this species have well-developed autophagic vacuoles and Golgi complex elements.

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Triatoma vitticeps (Stal, 1859) is a hematophagous Hemiptera that, although being considered wild, can be found in households, being a potential Chagas' disease vector. This work describes the histology and ultrastructure of the midgut of T. vitticeps under different starvation periods. Fifteen adults of both sexes starved for 3, 7, 20 and 25 days were studied. In general, digestive cells had apical microvilli, basal plasma membrane infoldings and central nucleus. The perimicrovillar membrane was found in all insects examined. Digestive cells of anterior midgut had lipid droplets, glycogen granules, developed basal labyrinth associated with mitochondria suggesting their role in nutrient storage and in fluid and ion transport. The cells of median and posterior regions of the midgut were rich in rough endoplasmic reticulum, lysosomes, vesicles and granules with different electron-densities. Moreover, cells of the posterior portion of the midgut had hemozoyn granules and mitochondria in the apical cytoplasm close to microvilli, suggesting their role in blood digestion and active nutrient absorption. The midgut of T. vitticeps showed differences in digestive cells associated with the time after feeding, and the increase of vesicles amount in long starvation periods, which suggests enzyme storage, which is readily used after a blood meal.
    Comptes rendus biologies 05/2010; 333(5):405-15. · 1.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over a quarter of a century ago, Mykles described the presence of putative endocrine cells in the midgut epithelium of the crab Cancer magister (Mykles, 1979). In the years that have followed, these cells have been largely ignored and nothing is known about their hormone content or the functions they play in this species. Here, we used a combination of immunohistochemistry and mass spectrometric techniques to investigate these questions. Using immunohistochemistry, we identified both SIFamide- and tachykinin-related peptide (TRP)-like immunopositive cells in the midgut epithelium of C. magister, as well as in that of Cancer borealis and Cancer productus. In each species, the SIFamide-like labeling was restricted to the anterior portion of the midgut, including the paired anterior midgut caeca, whereas the TRP-like immunoreactivity predominated in the posterior midgut and the posterior midgut caecum. Regardless of location, label or species, the morphology of the immunopositive cells matched that of the putative endocrine cells characterized ultrastructurally by Mykles (Mykles, 1979). Matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry identified the peptides responsible for the immunoreactivities as GYRKPPFNGSIFamide (Gly1-SIFamide) and APSGFLGMRamide [Cancer borealis tachykinin-related peptide Ia (CabTRP Ia)], respectively, both of which are known neuropeptides of Cancer species. Although the function of these midgut-derived peptides remains unknown, we found that both Gly1-SIFamide and CabTRP Ia were released when the midgut was exposed to high-potassium saline. In addition, CabTRP Ia was detectable in the hemolymph of crabs that had been held without food for several days, but not in that of fed animals, paralleling results that were attributed to TRP release from midgut endocrine cells in insects. Thus, one function that midgut-derived CabTRP Ia may play in Cancer species is paracrine/hormonal control of feeding-related behavior, as has been postulated for TRPs released from homologous cells in insects.
    Journal of Experimental Biology 03/2007; 210(Pt 4):699-714. · 3.24 Impact Factor


Available from
May 23, 2014