Integrated technology for evaluation of brain function and neural plasticity

Department of Clinical Neuroscience, Hospital Fatebenefratelli, Isola Tiberina 39, 00186-Rome, Italy.
Physical Medicine and Rehabilitation Clinics of North America (Impact Factor: 0.93). 03/2004; 15(1):263-306. DOI: 10.1016/S1047-9651(03)00124-4
Source: PubMed


The study of neural plasticity has expanded rapidly in the past decades and has shown the remarkable ability of the developing, adult, and aging brain to be shaped by environmental inputs in health and after a lesion. Robust experimental evidence supports the hypothesis that neuronal aggregates adjacent to a lesion in the sensorimotor brain areas can take over progressively the function previously played by the damaged neurons. It definitely is accepted that such a reorganization modifies sensibly the interhemispheric differences in somatotopic organization of the sensorimotor cortices. This reorganization largely subtends clinical recovery of motor performances and sensorimotor integration after a stroke. Brain functional imaging studies show that recovery from hemiplegic strokes is associated with a marked reorganization of the activation patterns of specific brain structures. To regain hand motor control, the recovery process tends over time to bring the bilateral motor network activation toward a more normal intensity/extent, while overrecruiting simultaneously new areas, perhaps to sustain this process. Considerable intersubject variability exists in activation/hyperactivation pattern changes over time. Some patients display late-appearing dorsolateral prefrontal cortex activation, suggesting the development of "executive" strategies to compensate for the lost function. The AH in stroke often undergoes a significant "remodeling" of sensory and motor hand somatotopy outside the "normal" areas, or enlargement of the hand representation. The UH also undergoes reorganization, although to a lesser degree. Although absolute values of the investigated parameters fluctuate across subjects, secondary to individual anatomic variability, variation is minimal with regards to interhemispheric differences, due to the fact that individual morphometric characters are mirrored in the two hemispheres. Excessive interhemispheric asymmetry of the sensorimotor hand areas seems to be the parameter with highest sensitivity in describing brain reorganization after a monohemispheric lesion, and mapping motor and somatosensory cortical areas through focal TMS, fMRI, PET, EEG, and MEG is useful in studying hand representation and interhemispheric asymmetries in normal and pathologic conditions. TMS and MEG allow the detection of sensorimotor areas reshaping, as a result of either neuronal reorganization or recovery of the previously damaged neural network. These techniques have the advantage of high temporal resolution but also have limitations. TMS provides only bidimensional scalp maps, whereas MEG, even if giving three-dimensional mapping of generator sources, does so by means of inverse procedures that rely on the choice of a mathematical model of the head and the sources. These techniques do not test movement execution and sensorimotor integration as used in everyday life. fMRI and PET may provide the ideal means to integrate the findings obtained with the other two techniques. This multitechnology combined approach is at present the best way to test the presence and amount of plasticity phenomena underlying partial or total recovery of several functions, sensorimotor above all. Dynamic patterns of recovery are emerging progressively from the relevant literature. Enhanced recruitment of the affected cortex, be it spared perilesional tissue, as in the case of cortical stroke, or intact but deafferented cortex, as in subcortical strokes, seems to be the rule, a mechanism especially important in early postinsult stages. The transfer over time of preferential activation toward contralesional cortices, as observed in some cases, seems, however, to reflect a less efficient type of plastic reorganization, with some aspects of maladaptive plasticity. Reinforcing the use of the affected side can cause activation to increase again in the affected side with a corresponding enhancement of clinical function. Activation of the UH MI may represent recruitment of direct (uncrossed) corticospinal tracts and relate more to mirror movements, but it more likely reflects activity redistribution within preexisting bilateral, large-scale motor networks. Finally, activation of areas not normally engaged in the dysfunctional tasks, such as the dorsolateral prefrontal cortex or the superior parietal cortex in motor paralysis, might reflect the implication of compensatory cognitive strategies. An integrated approach with technologies able to investigate functional brain imaging is of considerable value in providing information on the excitability, extension, localization, and functional hierarchy of cortical brain areas. Deepening knowledge of the mechanisms regulating the long-term recovery (even if partial), observed for most neurologic sequelae after neural damage, might prompt newer and more efficacious therapeutic and rehabilitative strategies for neurologic diseases.

73 Reads
  • Source
    • "Standard EEG techniques are characterized by low spatial resolution (several centimeters) when compared to structural MRI and PET techniques producing relatively non-invasive views of " in vivo " brain anatomy (millimeters to a few centimeters). However, structural MRI does not provide functional information about the brain, and PET scan of brain glucose metabolism/rCBF is limited in its temporal resolution (i.e., seconds to minutes for PET) compared to EEG (i.e., milliseconds; Rossini and Dal Forno, 2004). It should be noted that high temporal resolution of EEG is crucial for the study of an emerging property of brain activity, namely the spontaneous and event-related oscillatory gross electromagnetic activity at different frequency ranges, categorized as 1–4 Hz (delta), 4–8 Hz (theta), 8–13 Hz (alpha), 13–30 Hz (beta), and N30 Hz (gamma). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is the most frequent neurodegenerative disorder and cause of dementia along aging. It is characterized by a pathological extracellular accumulation of amyloid-beta peptides that affects excitatory and inhibitory synaptic transmission. It also triggers aberrant patterns of neuronal circuit activity at the network level. Growing evidence shows that AD targets cortical neuronal networks related to cognitive functions including episodic memory and visuospatial attention. This is partially reflected by the abnormal mechanisms of cortical neural synchronization and coupling that generate resting state electroencephalographic (EEG) rhythms. The cortical neural synchronization is typically indexed by EEG power density. The EEG coupling between electrode pairs probes functional (inter-relatedness of EEG signals) and effective (casual effect from one over the other electrode) connectivity. The former is typically indexed by EEG spectral coherence (linear) or synchronization likelihood (linear-nonlinear), the latter by granger causality or information theory indexes. Here we revised resting state EEG studies in mild cognitive impairment (MCI) and AD subjects as a window on abnormalities of the cortical neural synchronization and functional and effective connectivity. Results showed abnormalities of the EEG power density at specific frequency bands (<12Hz) in the MCI and AD populations, associated to an altered functional and effective EEG connectivity among long range cortical networks (i.e. fronto-parietal and fronto-temporal). These results suggest that resting state EEG rhythms reflect the abnormal cortical neural synchronization and coupling in the brain of prodromal and overt AD subjects, possibly reflecting dysfunctional neuroplasticity of the neural transmission in long range cortical networks. Copyright © 2015. Published by Elsevier B.V.
    International journal of psychophysiology: official journal of the International Organization of Psychophysiology 02/2015; DOI:10.1016/j.ijpsycho.2015.02.008 · 2.88 Impact Factor
  • Source
    • "What remains unclear, however, is how a rehabilitation robot should interact with the patient in order to optimize recovery during practice. One approach is to help patients practice movements that they cannot complete without assistance, which may foster somatosensory stimulation that induces brain plasticity [8]. Indeed, most rehabilitation robots are strong enough to complete movements even when patients are completely impaired and/or when tone and spasticity act in opposition. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes the design and preliminary testing of FINGER (Finger Individuating Grasp Exercise Robot), a device for assisting in finger rehabilitation after neurologic injury. We developed FINGER to assist stroke patients in moving their fingers individually in a naturalistic curling motion while playing a game similar to Guitar Hero(R)1. The goal was to make FINGER capable of assisting with motions where precise timing is important. FINGER consists of a pair of stacked single degree-of-freedom 8-bar mechanisms, one for the index and one for the middle finger. Each 8-bar mechanism was designed to control the angle and position of the proximal phalanx and the position of the middle phalanx. Target positions for the mechanism optimization were determined from trajectory data collected from 7 healthy subjects using color-based motion capture. The resulting robotic device was built to accommodate multiple finger sizes and finger-to-finger widths. For initial evaluation, we asked individuals with a stroke (n = 16) and without impairment (n = 4) to play a game similar to Guitar Hero(R) while connected to FINGER. Precision design, low friction bearings, and separate high speed linear actuators allowed FINGER to individually actuate the fingers with a high bandwidth of control (-3 dB at approximately 8 Hz). During the tests, we were able to modulate the subject's success rate at the game by automatically adjusting the controller gains of FINGER. We also used FINGER to measure subjects' effort and finger individuation while playing the game. Test results demonstrate the ability of FINGER to motivate subjects with an engaging game environment that challenges individuated control of the fingers, automatically control assistance levels, and quantify finger individuation after stroke.
    Journal of NeuroEngineering and Rehabilitation 02/2014; 11(1):10. DOI:10.1186/1743-0003-11-10 · 2.74 Impact Factor
  • Source
    • "Central signals from MI activity as well as their peripheral correlates, in the form of a set of ANS responses, may be associated to allow participants attempting to trigger robotic assistance. In turn, active assisted exercise provides novel somatosensory stimulation that can help induce brain plasticity (for reviews, see Dobkin, 1993; Rossini and Pauri, 2000; Rossini and Dal Forno, 2004; Dunlop, 2008). Brain-computer interfaces could be designed to control robotic devices which may help to move the impaired limb with the condition that either an intention to move is detected from cortical activity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of the current article is to provide a comprehensive overview of the literature offering a better understanding of the autonomic nervous system (ANS) correlates in motor imagery (MI) and movement observation. These are two high brain functions involving sensori-motor coupling, mediated by memory systems. How observing or mentally rehearsing a movement affect ANS activity has not been extensively investigated. The links between cognitive functions and ANS responses are not so obvious. We will first describe the organization of the ANS whose main purposes are controlling vital functions by maintaining the homeostasis of the organism and providing adaptive responses when changes occur either in the external or internal milieu. We will then review how scientific knowledge evolved, thus integrating recent findings related to ANS functioning, and show how these are linked to mental functions. In turn, we will describe how movement observation or MI may elicit physiological responses at the peripheral level of the autonomic effectors, thus eliciting autonomic correlates to cognitive activity. Key features of this paper are to draw a step-by step progression from the understanding of ANS physiology to its relationships with high mental processes such as movement observation or MI. We will further provide evidence that mental processes are co-programmed both at the somatic and autonomic levels of the central nervous system (CNS). We will thus detail how peripheral physiological responses may be analyzed to provide objective evidence that MI is actually performed. The main perspective is thus to consider that, during movement observation and MI, ANS activity is an objective witness of mental processes.
    Frontiers in Human Neuroscience 07/2013; 7:415. DOI:10.3389/fnhum.2013.00415 · 2.99 Impact Factor
Show more