Article

Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide.

Laboratory of Tumor Biology and Genetics of the Neurosurgery Departments of the University Hospitals, Lausanne, Switzerland.
Clinical Cancer Research (Impact Factor: 7.84). 04/2004; 10(6):1871-4. DOI: 10.1158/1078-0432.CCR-03-0384
Source: PubMed

ABSTRACT In the setting of a prospective clinical trial, we determined the predictive value of the methylation status of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter for outcome in glioblastoma patients treated with the alkylating agent temozolomide. Expression of this excision repair enzyme has been associated with resistance to alkylating chemotherapy.
The methylation status of MGMT in the tumor biopsies was evaluated in 38 patients undergoing resection for newly diagnosed glioblastoma and enrolled in a Phase II trial testing concomitant and adjuvant temozolomide and radiation. The epigenetic silencing of the MGMT gene was determined using methylation-specific PCR.
Inactivation of the MGMT gene by promoter methylation was associated with longer survival (P = 0.0051; Log-rank test). At 18 months, survival was 62% (16 of 26) for patients testing positive for a methylated MGMT promoter but reached only 8% (1 of 12) in absence of methylation (P = 0.002; Fisher's exact test). In the presence of other clinically relevant factors, methylation of the MGMT promoter remains the only significant predictor (P = 0.017; Cox regression).
This prospective clinical trial identifies MGMT-methylation status as an independent predictor for glioblastoma patients treated with a methylating agent. The association of the epigenetic inactivation of the DNA repair gene MGMT with better outcome in this homogenous cohort may have important implications for the design of future trials and supports efforts to deplete MGMT by O-6-benzylguanine, a noncytotoxic substrate of this enzyme.

0 Bookmarks
 · 
110 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation is reported to be a prognostic and predictive factor of alkylating chemotherapy for glioblastoma patients. Methylation specific PCR (MSP) has been most commonly used when the methylation status of MGMT is assessed. However, technical obstacles have hampered the implementation of MSP-based diagnostic tests. We quantitatively analyzed the methylation status of the entire MGMT promoter region and applied this information for prognostic prediction using sequencing technology METHODS: Between 1998 and 2012, the genomic DNA of 85 tumor samples from newly diagnosed glioblastoma patients was subjected to bisulfite treatment and subdivided into a training set, consisting of fifty-three samples, and a test set, consisting of thirty-two samples. The training set was analyzed by deep Sanger sequencing with a sequencing coverage of up to 96 clones per sample. This analysis quantitatively revealed the degree of methylation of each cytidine phosphate guanosine (CpG) site. Based on these data, we constructed a prognostic prediction system for glioblastoma patients using a supervised learning method. We then validated this prediction system by deep sequencing with a next-generation sequencer using a test set of 32 samples.
    BMC Cancer 08/2014; 14(1):641. · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient's response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease.
    Genes. 01/2014; 5(3):821-864.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MGMT expression is a critical determinant for therapeutic resistance to DNA alkylating agents. We previously demonstrated that MGMT expression is post-transcriptionally regulated by miR-181d and other miRNAs. Here, we performed a genome-wide screen to identify MGMT regulating miRNAs. Candidate miRNAs were further tested for inverse correlation with MGMT expression in clinical specimens. We identified 15 candidate miRNAs and characterized the top candidate, miR-603. Transfection of miR-603 suppressed MGMT mRNA/protein expression in vitro and in vivo; this effect was reversed by transfection with antimiR-603. miR-603 affinity-precipitated with MGMT mRNA and suppressed luciferase activity in an MGMT-3'UTR-luciferase assay, suggesting direct interaction between miR-603 and MGMT 3'UTR. miR-603 transfection enhanced the temozolomide (TMZ) sensitivity of MGMT-expressing glioblastoma cell lines. Importantly, miR-603 mediated MGMT suppression and TMZ resistance were reversed by expression of an MGMT cDNA. In a collection of 74 clinical glioblastoma specimens, both miR-603 and miR-181d levels inversely correlated with MGMT expression. Moreover, a combined index of the two miRNAs better reflected MGMT expression than each individually. These results suggest that MGMT is co-regulated by independent miRNAs. Characterization of these miRNAs should contribute toward strategies for enhancing the efficacy of DNA alkylating agents.
    Oncotarget 05/2014; · 6.64 Impact Factor