Characterisation of DRASIC in the mouse inner ear.

Department of Gene Identification and Expression, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Vic. 3052, Australia.
Hearing Research (Impact Factor: 2.85). 05/2004; 190(1-2):149-60. DOI: 10.1016/S0378-5955(04)00015-2
Source: PubMed

ABSTRACT Within the cochlea, the hair cells detect sound waves and transduce them into receptor potential. The molecular architecture of the highly specialised cochlea is complex and until recently little was known about the molecular interactions which underlie its function. It is now clear that the coordinated expression and interplay of hundreds of genes and the integrity of cochlear cells regulate this function. It was hypothesised that transcripts expressed highly or specifically in the cochlea are likely to have important roles in normal hearing. Microarray analyses of the Soares NMIE library, consisting of 1536 cDNA clones isolated from the mouse inner ear, suggested that the expression of the mechanoreceptor DRASIC was enriched in the cochlea compared to other tissues. This amiloride-sensitive ion channel is a member of the DEG/ENaC superfamily and a potential candidate for the unidentified mechanoelectrical transduction channel of the sensory hair cells of the cochlea. The cochlear-enriched expression of amiloride-sensitive cation channel 3 (ACCN3) was confirmed by quantitative real-time polymerase chain reaction. Using in situ hybridisation and immunofluorescence, DRASIC expression was localised to the cells and neural fibre region of the spiral ganglion. DRASIC protein was also detected in cells of the organ of Corti. DRASIC may be present in cochlear hair cells as the ACCN3 transcript was shown to be expressed in immortalised cell lines that exhibit characteristics of hair cells. The normal mouse ACCN3 cDNA and an alternatively spliced transcript were elucidated by reverse transcription polymerase chain reaction from mouse inner ear RNA. This transcript may represent a new protein isoform with an as yet unknown function. A DRASIC knockout mouse model was tested for a hearing loss phenotype and was found to have normal hearing at 2 months of age but appeared to develop hearing loss early in life. The human homologue of ACCN3, acid-sensing ion channel 3, maps to the same chromosomal region as the autosomal recessive hearing loss locus DFNB13. However, we did not detect mutations in this gene in a family with DFNB13 hearing loss.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: According to a modern look acid-sensing ion channels (ASICs) are one of the most important receptors that perceive pH change in the body. ASICs represent proton-gated Na+-selective channels, which are expressed in neurons of the central and peripheral nervous system. These channels are attracting attention of researchers around the world, as they are involved in various physiological processes in the body. Drop of pH may occur in tissues in norm (e.g. the accumulation of lactic acid, the release of protons upon ATP hydrolysis) and pathology (inflammation, ischemic stroke, tissue damage and seizure). These processes are accompanied by unpleasant pain sensations, which may be short-lived or can lead to chronic inflammatory diseases. Modulators of ASIC channels activity are potential candidates for new effective analgesic and neuroprotection drugs. This review summarizes available information about structure, function, and physiological role of ASIC channels. In addition a description of all known ligands of these channels and their practical relevance is provided.
    Biochemistry (Moscow) 12/2015; 79(13):1528-1545. DOI:10.1134/S0006297914130069 · 1.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Advanced gene targeting technology and related tools in mice have been incorporated into studies of acid-sensing ion channels (ASICs). A single ASIC subtype can be knocked out specifically and screened thoroughly for expression in the nervous system at the cellular level. Mapping studies have further shed light on the initiation and identification of related behavioral phenotypes. Here we review studies involving genetically engineered mouse models used to investigate the physiological function of individual ASIC subtypes: ASIC1 (and ASIC1a), ASIC2, ASIC3 and ASIC4. We discuss the detailed expression studies and significant phenotypes revealed with gene knockout for most known Asic subtypes. Each strategy designed to manipulate mouse genetics has advantages and disadvantages. We discuss the limitations of these Asic-knockout models and propose future directions to solve the genetic issues. Copyright © 2014. Published by Elsevier Ltd.
    Neuropharmacology 01/2015; DOI:10.1016/j.neuropharm.2014.12.011 · 4.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The most common form of sensory disability is age-related hearing loss (ARHL), also referred to as presbycusis. ARHL is a complex disorder with a mixture of genetic and environmental components, a combination that leads to a progressive decline in hearing function with increased age. In the last 15 years, there has been a vast increase in our knowledge of the genes that underlie congenital deafness and the critical components of hearing. In contrast, knowledge of the pathological processes involved in ARHL remains very limited. The mouse has proved an essential tool in the identification of early-onset deafness genes and in revealing the basic mechanisms of hearing. As focus is now turning toward elucidating the most common form of hearing loss, ARHL, the mouse will again play a fundamental role in this research. Here, we review the need for an animal model and discuss the suitability of the mouse as an ARHL model. Finally, we outline the ways in which hearing researchers are utilising the mouse in the investigation of ARHL and provide perspectives on the need for these data to be integrated with the results of human genetic studies. © 2014 S. Karger AG, Basel.
    Gerontology 11/2014; 61(2). DOI:10.1159/000368399 · 2.68 Impact Factor