[Glyphosate--a non-toxic pesticide?].

Katedry Biofizyki Skazeń Srodowiska Uniwersytetu Łódzkiego.
Medycyna pracy (Impact Factor: 0.32). 02/2003; 54(6):579-83.
Source: PubMed

ABSTRACT Glyphosate is currently the most commonly applied herbicide and its use is still growing. Nowadays, over 50 commercial preparations containing this compound are used, and these formulations are much more toxic than their active compound, glyphosate, owing to the presence of many surfactants and carrier compounds. Toxicological investigations provide evidence that glyphosate is an extremely "safe" herbicide for animals. This is why its use in agriculture is universal. In June 1991, the Environmental Protection Agency (EPA) categorized this compound into class E (according to EPA there are five categories of carcinogenicity), which means that it is probably not carcinogenic to humans. Unfortunately, the study carried out by Swedish oncologists in 2001 showed that glyphosate may induce cancer of the lymphatic system. The results of the Swedish study have changed our opinion about "safety" of this herbicide. Investigations concerning both its accumulation and toxic effect in animals and plants are now under way in many laboratories.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the introduction of genetically modified (GM) crops there has been increasing concern on their potential impact, particularly their possible ecological impact. This report follows from earlier research that examined this issue in detail and investigates the potential biodiversity impact of two GM crops that are most likely to suit Irish agronomic conditions. These are glyphosate or glufosinate herbicide tolerant (HT) maize and oilseed rape. The research reported here is an extensive analysis of the scientific literature on the subject and was carried out between August 2009 and July 2010. There are several key conclusions from this analysis. There are many ‘wild’ species related to oilseed rape in Ireland, none of whom are native and many of whom are highly unlikely to survive when crossed with the current oilseed rape crop plant (Brassica napus). The only exception is wild turnip (Brassica rapa), which is an earlier oilseed crop now no longer farmed but anecdotally present in marginal habitats. Worldwide, there have been ongoing and intensive surveys of the potential for GMHT B. napus to transfer herbicide tolerance to B. rapa. While it has been shown that this may occur, the resulting offspring may not survive without being ‘selected’ – that is being sprayed with the herbicide for which they have a tolerance. In Ireland, marginal habitats are not routinely sprayed. There is no likelihood of maize impacting on wild relatives as none exist in Ireland. In real-world conditions, there are some scenarios where accidental spraying may occur and where management arrangements may give rise to an opportunity for a GMHT plant to prevail in the landscape. This was examined and presented in a series of five hypothetical scenarios. It is shown that there are no creditable scenarios where a GMHT crop can persist or prevail over time any more than a non-GM crop. Furthermore, it is also shown that it is in the management of the GM or non-GM crop that the potential for biodiversity impact is at its greatest. Glyphosate and glufosinate toxicity was examined in detail and it is shown that these two compounds have significantly less toxicity that other compounds currently used. There are systemic and do not persist in the soil. Their impact on water biodiversity is low. Using a recently-developed index of biodiversity impact (CINMa), the two GMHT crops were subjected of a rigorous analysis of their potential for impact. It is shown that in the management of GMHT maize there is the potential for benefiting landscape biodiversity by lowering toxic materials and management frequency. The same may be said for oilseed rape management, but there is some likelihood for transfer of genetic material to a wild relative. The potential impact of this is low and there is a net beneficial impact as with maize.
    01/2011; Environmental Protection Agency., ISBN: 978-1-84095-393-0
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glyphosate is a widely used broad spectrum herbicide, reported to induce various toxic effects in non-target species, but its carcinogenic potential is still unknown. Here we showed the carcinogenic effects of glyphosate using 2-stage mouse skin carcinogenesis model and proteomic analysis. Carcinogenicity study revealed that glyphosate has tumor promoting activity. Proteomic analysis using 2-dimensional gel electrophoresis and mass spectrometry showed that 22 spots were differentially expressed (>2 fold) on glyphosate, 7, 12-dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoyl-phorbol-13-acetate (TPA) application over untreated control. Among them, 9 proteins (translation elongation factor eEF-1 alpha chain, carbonic anhydrase III, annexin II, calcyclin, fab fragment anti-VEGF antibody, peroxiredoxin-2, superoxide dismutase [Cu-Zn], stefin A3, and calgranulin-B) were common and showed similar expression pattern in glyphosate and TPA-treated mouse skin. These proteins are known to be involved in several key processes like apoptosis and growth-inhibition, anti-oxidant responses, etc. The up-regulation of calcyclin, calgranulin-B and down-regulation of superoxide dismutase [Cu-Zn] was further confirmed by immunoblotting, indicating that these proteins can be good candidate biomarkers for skin carcinogenesis induced by glyphosate. Altogether, these results suggested that glyphosate has tumor promoting potential in skin carcinogenesis and its mechanism seems to be similar to TPA.
    Journal of proteomics 03/2010; 73(5):951-64. DOI:10.1016/j.jprot.2009.12.008 · 3.93 Impact Factor