Interaction kinetics of the copper-responsive CopY repressor with the cop promoter of Enterococcus hirae.

Department of Clinical Pharmacology, University of Berne, Murtenstrasse 35, 3010 Berne, Switzerland.
JBIC Journal of Biological Inorganic Chemistry (Impact Factor: 3.35). 07/2004; 9(4):396-402. DOI: 10.1007/s00775-004-0536-1
Source: PubMed

ABSTRACT In Enterococcus hirae, copper homeostasis is controlled by the cop operon, which encodes the copper-responsive repressor CopY, the copper chaperone CopZ, and two copper ATPases, CopA and CopB. The four genes are under control of CopY, which is a homodimeric zinc protein, [Zn(II)CopY]2. It acts as a copper-responsive repressor: when media copper is raised, CopY is released from the DNA, allowing transcription to proceed. This involves the conversion of [Zn(II)CopY]2 to [Cu(I)2CopY]2, which is no longer able to bind to the promoter. Binding analysis of [Zn(II)CopY]2 to orthologous promoters and to control DNA by surface plasmon resonance analysis defined the consensus sequence TACAnnTGTA as the repressor binding element, or " cop box", of Gram-positive bacteria. Association and dissociation rates for the CopY-DNA interaction in the absence and presence of added copper were determined. The dissociation rate of [Zn(II)CopY]2 from the promoter was 7.3 x 10(-6) s(-1) and was increased to 5 x 10(-5) s(-1) in the presence of copper. This copper-induced change may be the underlying mechanism of copper induction. Induction of the cop operon was also assessed in vivo with a biosensor containing a lux reporter system under the control of the E. hirae cop promoter. Half-maximal induction of this biosensor was observed at 5 microM media copper, which delineates the ambient copper concentration to which the cop operon responds in vivo.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We identified 1219 articles published in 2006 that described work performed using commercial optical biosensor platforms. It is interesting to witness how the biosensor market is maturing with an increased number of instrument manufacturers offering a wider variety of platforms. However, it is clear from a review of the results presented that the advances in technology are outpacing the skill level of the average biosensor user. While we can track a gradual improvement in the quality of the published work, we clearly have a long way to go before we capitalize on the full potential of biosensor technology. To illustrate what is right with the biosensor literature, we highlight the work of 10 groups who have their eye on the ball. To help out the rest of us who have the lights on but nobody home, we use the literature to address common myths about biosensor technology.
    Journal of Molecular Recognition 01/2001; 20(5):300-66. · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CopR of Lactococcus lactis is a copper-responsive repressor involved in copper homoeostasis. It controls the expression of a total of 11 genes, the CopR regulon, in a copper-dependent manner. In the absence of copper, CopR binds to the promoters of the CopR regulon. Copper releases CopR from the promoters, allowing transcription of the downstream genes to proceed. CopR binds through its N-terminal domain to a 'cop box' of consensus TACANNTGTA, which is conserved in Firmicutes. We have solved the NMR solution structure of the N-terminal DNA-binding domain of CopR. The protein fold has a winged helix structure resembling that of the BlaI repressor which regulates antibiotic resistance in Bacillus licheniformis. CopR differs from other copper-responsive repressors, and the present structure represents a novel family of copper regulators, which we propose to call the CopY family.
    Biochemical Journal 11/2008; 417(2):493-9. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In trace amounts, copper is essential for the function of key enzymes in prokaryotes and eukaryotes. Organisms have developed sophisticated mechanisms to control the cytosolic level of the metal, manage its toxicity and survive in copper-rich environments. Here we show that the Sulfolobus CopR represents a novel class of copper-responsive regulators, unique to the archaeal domain. Furthermore, by disruption of the ORF Sso2652 (copR) of the Sulfolobus solfataricus genome, we demonstrate that the gene encodes a transcriptional activator of the copper-transporting ATPase CopA gene and co-transcribed copT, encoding a putative copper-binding protein. Disruption resulted in a loss of copper tolerance in two copR-knockout mutants, while metals such as zinc, cadmium and chromium did not affect their growth. Copper sensitivity in the mutant was linked to insufficient levels of expression of CopA and CopT. The findings were further supported by time-course inductively coupled plasma optical emission spectrometry measurements, whereby continued accumulation of copper in the S. solfataricus mutant was observed. In contrast, copper accumulation in the wild-type stabilized after reaching approximately 6 pg (µg total protein)(-1). Complementation of the disrupted mutant with a wild-type copy of the copR gene restored the wild-type phenotype with respect to the physiological and transcriptional response to copper. These observations, taken together, lead us to propose that CopR is an activator of copT and copA transcription, and the member of a novel class of copper-responsive regulators.
    Microbiology 07/2011; 157(Pt 10):2808-17. · 3.06 Impact Factor

Full-text (2 Sources)

Available from
May 27, 2014