Nonsense-mediated mRNA decay: from vacuum cleaner to Swiss army knife

Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Im Neuenheimer Feld 150, 69120 Heidelberg, Germany.
Genome biology (Impact Factor: 10.47). 02/2004; 5(4):218. DOI: 10.1186/gb-2004-5-4-218
Source: PubMed

ABSTRACT Nonsense-mediated mRNA decay (NMD) downmodulates mRNAs that have in-frame premature termination codons and prevents translation of potentially harmful truncated proteins from aberrant mRNAs. Two new approaches have identified physiological NMD substrates, and suggest that NMD functions as a multipurpose tool in the modulation of gene expression.

Download full-text


Available from: Gabriele Neu-Yilik, Jul 03, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The expression of voltage-gated sodium channels is regulated at multiple levels, and in this study we addressed the potential for alternative splicing of the Na(v)1.2, Na(v)1.3, Na(v)1.6 and Na(v)1.7 mRNAs. We isolated novel mRNA isoforms of Na(v)1.2 and Na(v)1.3 from adult mouse and rat dorsal root ganglia (DRG), Na(v)1.3 and Na(v)1.7 from adult mouse brain, and Na(v)1.7 from neonatal rat brain. These alternatively spliced isoforms introduce an additional exon (Na(v)1.2 exon 17A and topologically equivalent Na(v)1.7 exon 16A) or exon pair (Na(v)1.3 exons 17A and 17B) that contain an in-frame stop codon and result in predicted two-domain, truncated proteins. The mouse and rat orthologous exon sequences are highly conserved (94-100% identities), as are the paralogous Na(v)1.2 and Na(v)1.3 exons (93% identity in mouse) to which the Na(v)1.7 exon has only 60% identity. Previously, Na(v)1.3 mRNA has been shown to be upregulated in rat DRG following peripheral nerve injury, unlike the downregulation of all other sodium channel transcripts. Here we show that the expression of Na(v)1.3 mRNA containing exons 17A and 17B is unchanged in mouse following peripheral nerve injury (axotomy), whereas total Na(v)1.3 mRNA expression is upregulated by 33% (P=0.003), suggesting differential regulation of the alternatively spliced transcripts. The alternatively spliced rodent exon sequences are highly conserved in both the human and chicken genomes, with 77-89% and 72-76% identities to mouse, respectively. The widespread conservation of these sequences strongly suggests an additional level of regulation in the expression of these channels, that is also tissue-specific.
    Neuroscience 09/2008; 155(3):797-808. DOI:10.1016/j.neuroscience.2008.04.060 · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sequence-based analyses have predicted that approximately 35% of mammalian alternative splicing (AS) events produce premature termination codon (PTC)-containing splice variants that are targeted by the process of nonsense-mediated mRNA decay (NMD). This led to speculation that AS may often regulate gene expression by activating NMD. Using AS microarrays, we show that PTC-containing splice variants are generally produced at uniformly low levels across diverse mammalian cells and tissues, independently of the action of NMD. Our results suggest that most PTC-introducing AS events are not under positive selection pressure and therefore may not contribute important functional roles.
    Genes & Development 02/2006; 20(2):153-8. DOI:10.1101/gad.1382806 · 12.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic cells target mRNAs to the nonsense-mediated mRNA decay (NMD) pathway when translation terminates within the coding region. In mammalian cells, this is presumably due to a downstream signal deposited during pre-mRNA splicing. In contrast, unspliced retroviral RNA undergoes NMD in chicken cells when premature termination codons (PTCs) are present in the gag gene. Surprisingly, deletion of a 401-nt 3' UTR sequence immediately downstream of the normal gag termination codon caused this termination event to be recognized as premature. We termed this 3' UTR region the Rous sarcoma virus (RSV) stability element (RSE). The RSE also stabilized the viral RNA when placed immediately downstream of a PTC in the gag gene. Deletion analysis of the RSE indicated a smaller functional element. We conclude that this 3' UTR sequence stabilizes termination codons in the RSV RNA, and termination codons not associated with such an RSE sequence undergo NMD.
    RNA 02/2006; 12(1):102-10. DOI:10.1261/rna.2129806 · 4.62 Impact Factor