Article

Bioprocess parameters and oxygen transfer characteristics in beta-lactamase production by Bacillus species.

Department of Chemical Engineering, Industrial Biotechnology Laboratory, Middle East Technical University, 06531 Ankara, Turkey.
Biotechnology Progress (Impact Factor: 1.85). 01/2004; 20(2):491-9. DOI: 10.1021/bp0342351
Source: PubMed

ABSTRACT After screening potential beta-lactamase producers in a medium containing penicillin G, an inducible (Bacillus subtilis NRS 1125) and a constitutive (Bacillus licheniformis 749/C ATCC 25972) beta-lactamase producer were selected. As the highest enzyme activity was obtained with B. licheniformis 749/C, the effects of the concentration of carbon sources, i.e., glucose, fructose, sucrose, citric acid, and glycerol, and nitrogen sources, i.e., (NH(4))(2)HPO(4), NH(4)Cl, yeast extract, casamino acids and peptone, pH, and temperature on beta-lactamase production were investigated with B. licheniformis 749/C in laboratory scale bioreactors. Among the investigated media, the highest volumetric activity was obtained as 270 U cm(-)(3) in the medium containing 10.0 kg m(-)(3) glucose, 1.18 kg m(-)(3) (NH(4))(2)HPO(4), 8.0 kg m(-)(3) yeast extract, and the salt solution at 32 degrees C and pH(0) = 6.0. By using the designed medium, fermentation and oxygen transfer characteristics of the bioprocess were investigated at V = 3.0 dm(3) bioreactor systems with a V(R) = 1.65 dm(3) working volume at Q(O)/V(R) = 0.5 vvm and N = 500 min(-1). At the beginning of the process the Damköhler number was <1, indicating that the process was at biochemical reaction limited condition; at t = 2-5 h both mass-transfer and biochemical reaction resistances were effective; and at t = 6-10 h (Da >1) the bioprocess was at mass transfer limited condition. Overall oxygen transfer coefficients (K(L)a) varied between 0.01 and 0.03 s(-)(1), enhancement factor (K(L)a/K(L)a(O)) varied between 1.2 and 2.3, and volumetric oxygen uptake rate varied between 0.001 and 0.003 mol m(-)(3) s(-)(1) throughout the bioprocess. The specific oxygen uptake and the specific substrate consumption rates were the highest at t = 2 h and then decreased with the cultivation. The maximum yield of cells on substrate and the maximum yield of cells on oxygen values were obtained, respectively, as Y(X/S) = 0.34 and Y(X/O) = 1.40, at t = 5 h, whereas the highest yield of substrate on oxygen was obtained as Y(S/O) = 6.94 at t = 3.5 h. The rate of oxygen consumption for maintenance and the rate of substrate consumption for maintenance values were found, respectively, as m(O) = 0.13 kg kg(-)(1) h(-)(1) and m(S) = 3.02 kg kg(-)(1) h(-)(1).

0 Bookmarks
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of aeration and agitation on metabolic heat, alkaline protease production and morphology for Aspergillus tamarii MTCC5152 are reported in this manuscript. Measurement of metabolic heat has been attempted by the continuous and dynamic heat balance method in a biological real-time reaction calorimeter. At lower agitation intensities, growth-related processes were dominating. As a result the protease activity and the product heat yields were lower than those for 350 and 450 rpm. Although biomass growth was necessary to obtain maximum protease yield, agitation seemed to play a vital role in the protease production process. Energy dissipation per circulation function of the process is also deduced from power input. At optimal conditions, 350 rpm and 1 vvm, the gassed power required was 0.133 W. Pellet morphology and protease production were studied under different aeration and agitation intensities of A. tamarii. Pellet structure was considerably influenced by DO, a higher DO level resulted in denser pellets (1,018.4 kg/m(3)) leading to higher protease activity. Coupling of hydrodynamics and bio-reaction highlighted the complex relationship between energy dissipation, substrate uptake rate and fungal physiology. This study emphasised the potential of biocalorimetry as a reliable monitoring and robust control tool for aerobic fermentation of A. tamarii, using agricultural by-products.
    Applied Microbiology and Biotechnology 03/2012; 94(6):1533-42. · 3.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cow raw milk from dairy cooperatives was examined for its microbial composition. Among the isolates identified, 17.6% were yeasts. The most frequent genus was Candida, although members belonging to the genera Brettanomyces, Dekkera, and Geotricum were also identified. Although qualitative and quantitative tests for extracellular proteolytic activity were positive for all the species isolated, Candida buinensis showed the highest response (23.5 U/mg); therefore, it was selected for subsequent investigation. The results of fermentations carried out at variable temperature, pH, and soybean flour concentration, according to a 2(3) full factorial design, demonstrated that this yeast ensured the highest production of extracellular proteases (573 U/mL) when cultivated at 35 degrees C, pH 6.5, and using soybean flour concentrations in the range 0.1-0.5% (w/v). The cell-free supernatants showed the highest activity at 25 degrees C and pH 7.0, and satisfactory stability in the ranges 25-30 degrees C and pH 7-9. The first-order rate constants of protease inactivation in the cell-free supernatants were calculated at different temperatures from semi-log plots of the residual activity versus time and then used in Arrhenius and Eyring plots to estimate the main thermodynamic parameters of thermoinactivation (E* = 40.0 kJ/mol; DeltaH* = 37.3 kJ/mol; DeltaS* = -197.5 J/mol K; DeltaG* = 101 kJ/mol).
    Applied biochemistry and biotechnology 03/2010; 162(3):830-42. · 1.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is a worldwide interest in the development of processes for colorants production from natural sources such as microorganism. The aim of this study was to optimize red colorants production by Penicillium purpurogenum DPUA 1275 and to evaluate the effect of pH, temperature, salts and polymers on the stability of these colorants. Under optimized conditions, a 78% increase in red colorants production was achieved. The best pH and temperature conditions were obtained at pH 8.0 and 70 °C, respectively. In the presence of salts NaCl and Na2 SO4 , at concentrations of 0.1 and 0.5 M, respectively, in Mcllvaine buffer (pH 8.0), the red colorants showed good stability. In the presence of both polymers Polyethylene Glycol (PEG) and Sodium Polyacrylate (NaPA), the red colorants kept their color intensity. Thus, the present study presents characteristics of red colorants produced by P. purpurogenum that can be applied in different industries after toxicological examination. © 2013 American Institute of Chemical Engineers Biotechnol. Prog.,, 2013.
    Biotechnology Progress 03/2013; · 1.85 Impact Factor