Article

The impact of alpha-lipoic acid, coenzyme Q10 and caloric restriction on life span and gene expression patterns in mice.

Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA.
Free Radical Biology and Medicine (Impact Factor: 5.27). 04/2004; 36(8):1043-57. DOI: 10.1016/j.freeradbiomed.2004.01.015
Source: PubMed

ABSTRACT We evaluated the efficacy of three dietary interventions started at middle age (14 months) to retard the aging process in mice. These were supplemental alpha-lipoic acid (LA) or coenzyme Q(10) (CQ) and caloric restriction (CR, a positive control). LA and CQ had no impact on longevity or tumor patterns compared with control mice fed the same number of calories, whereas CR increased maximum life span by 13% (p <.0001) and reduced tumor incidence. To evaluate these interventions at the molecular level, we used microarrays to monitor the expression of 9977 genes in hearts from young (5 months) and old (30 months) mice. LA, CQ, and CR inhibited age-related alterations in the expression of genes involved in the extracellular matrix, cellular structure, and protein turnover. However, unlike CR, LA and CQ did not prevent age-related transcriptional alterations associated with energy metabolism. LA supplementation lowered the expression of genes encoding major histocompatibility complex components and of genes involved in protein turnover and folding. CQ increased expression of genes involved in oxidative phosphorylation and reduced expression of genes involved in the complement pathway and several aspects of protein function. Our observations suggest that supplementation with LA or CQ results in transcriptional alterations consistent with a state of reduced oxidative stress in the heart, but that these dietary interventions are not as effective as CR in inhibiting the aging process in the heart.

0 Bookmarks
 · 
60 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: First proposed by D Harman in the 1950s, the Mitochondrial Free Radical Theory of Aging (MFRTA) has become one of the most tested and well-known theories in aging research. Its core statement is that aging results from the accumulation of oxidative damage, which is closely linked with the release of reactive oxygen species (ROS) from mitochondria. Although MFRTA has been well acknowledged for more than half a century, conflicting evidence is piling up in recent years querying the causal effect of ROS in aging. A critical idea thus emerges that contrary to their conventional image only as toxic agents, ROS at a non-toxic level function as signaling molecules that induce protective defense in responses to age-dependent damage. Furthermore, the peroxisome, another organelle in eukaryotic cells, might have a say in longevity modulation. Peroxisomes and mitochondria are two organelles closely related to each other, and their interaction has major implications for the regulation of aging. The present review particularizes the questionable sequiturs of the MFRTA, and recommends peroxisome, similarly as mitochondrion, as a possible candidate for the regulation of aging. Geriatr Gerontol Int 2014; ●●: ●●–●●.
    Geriatrics & Gerontology International 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Coenzyme Q derivatives (CoQ) are lipid soluble antioxidants that are synthesized endogenously in almost all species and function as an obligatory cofactor of the respiratory chain. There is evidence that CoQ status is altered by age in several species. Here we determined level and redox-state of CoQ in different age groups of pigs, mice and Caenorhabditis elegans. Since these species are very different with respect to lifespan, reproduction and physiology, our approach could provide some general tendencies of CoQ status in ageing organisms. We found that CoQ level decreases with age in pigs and mice, whereas CoQ content increases in older worms. As observed in all three species, ubiquinone, the oxidized form of CoQ, increases with age. Additionally, we were able to show that supplementation of ubiquinol-10, the reduced form of human CoQ10 , slightly increases lifespan of post-reproductive worms. In conclusion, the percentage of the oxidized form of CoQ increases with age indicating higher oxidative stress or rather a decreased anti-oxidative capacity of aged animals. © 2014 BioFactors, 2014.
    BioFactors 02/2014; · 3.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The reduced form of Coenzyme Q10 (CoQ10), ubiquinol (Q10H2), serves as a potent antioxidant in mitochondria and lipid membranes. There is evidence that Q10H2 protects against oxidative events in lipids, proteins and DNA. Serum gamma-glutamyltransferase (GGT) activity is associated with cardiovascular diseases. In a physiological range, activity of GGT is a potential early and sensitive marker of inflammation and oxidative stress.In this study, we first examined the relationship between CoQ10 status and serum GGT activity in 416 healthy participants between 19 and 62 years of age in a cross-sectional study (cohort I). In the second step, 53 healthy males (21-48 years of age; cohort II) underwent a 14-day Q10H2 supplementation (150 mg/d) to evaluate the effect of Q10H2 supplementation on serum GGT activity and GGT1 gene expression.
    BMC Research Notes 07/2014; 7(1):427.