Article

Vibrio cholerae periplasmic superoxide dismutase: isolation of the gene and overexpression of the protein.

Biological Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
Journal of Biotechnology (Impact Factor: 3.18). 05/2004; 109(1-2):123-30. DOI: 10.1016/j.jbiotec.2004.01.002
Source: PubMed

ABSTRACT Superoxide dismutases are ubiquitous enzymes which play an important role in protecting cells against oxidative damage and which have also been shown to contribute to the pathogenicity of many bacterial species. Here we demonstrate that Vibrio cholerae, the causative agent of cholerae, expresses an active periplasmic Cu,Zn superoxide dismutase. Moreover, we have set up an expression system yielding large amounts of V. cholerae recombinant Cu,Zn superoxide dismutase in the periplasm of Escherichia coli and a procedure to obtain the enzyme in a highly purified form. Unlike the bovine enzyme, V. cholerae Cu,Zn superoxide dismutase has been proved to be highly resistant to inactivation by hydrogen peroxide. This property, which appears to be common to other bacterial enzymes of this class, might improve the ability of Cu,Zn superoxide dismutase to protect bacteria against the reactive oxygen species produced by phagocytes.

0 Bookmarks
 · 
57 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Highly virulent enterohemorrhagic Escherichia coli O157:H7 strains possess three sodC genes encoding for periplasmic Cu, Zn superoxide dismutases: sodC, which is identical to the gene present in non-pathogenic E. coli strains, and sodC-F1 and sodC-F2, two nearly identical genes located within lambdoid prophage sequences. The significance of this apparent sodC redundancy in E. coli O157:H7 has not yet been investigated. We report that strains deleted of one or more sodC genes are less resistant than the wild type strain to a challenge with hydrogen peroxide, thus confirming their involvement in the bacterial antioxidant apparatus. To understand if the different sodC genes have truly overlapping functions, we have carried out a comparison of the functional, structural and regulatory properties of the various E. coli O157:H7 SodC enzymes. We have found that the chromosomal and prophagic sodC genes are differentially regulated in vitro. sodC is exclusively expressed in aerobic cultures grown to the stationary phase. In contrast, sodC-F1 and sodC-F2 are expressed also in the logarithmic phase and in anaerobic cultures. Moreover, the abundance of SodC-F1/SodC-F2 increases with respect to that of SodC in bacteria recovered from infected Caco-2 cells, suggesting higher expression/stability of SodC-F1/SodC-F2 in intracellular environments. This observation correlates with the properties of the proteins. In fact, monomeric SodC and dimeric SodC-F1/SodC-F2 are characterized by sharp differences in catalytic activity, metal affinity, protease resistance and stability. Our data show that the chromosomal and bacteriophage-associated E. coli O157:H7 sodC genes have different regulatory properties and encode for proteins with distinct structural/functional features, suggesting that they likely play distinctive roles in bacterial protection from reactive oxygen species. In particular, dimeric SodC-F1 and SodC-F2 possess physico-chemical properties which make these enzymes more suitable than SodC to resist the harsh environmental conditions which are encountered by bacteria within the infected host.
    BMC Microbiology 11/2008; 8:166. · 2.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pathogenicity of Vibrio cholerae is influenced by sodium ions which are actively extruded from the cell by the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR). To study the function of the Na(+)-NQR in the respiratory chain of V. cholerae, we examined the formation of organic radicals and superoxide in a wild-type strain and a mutant strain lacking the Na(+)-NQR. Upon reduction with NADH, an organic radical was detected in native membranes by electron paramagnetic resonance spectroscopy which was assigned to ubisemiquinones generated by the Na(+)-NQR. The radical concentration increased from 0.2 mM at 0.08 mM Na(+) to 0.4 mM at 14.7 mM Na(+), indicating that the concentration of the coupling cation influences the redox state of the quinone pool in V. cholerae membranes. During respiration, V. cholerae cells produced extracellular superoxide with a specific activity of 10.2 nmol min(-1) mg(-1) in the wild type compared to 3.1 nmol min(-1) mg(-1) in the NQR deletion strain. Raising the Na(+) concentration from 0.1 to 5 mM increased the rate of superoxide formation in the wild-type V. cholerae strain by at least 70%. Rates of respiratory H(2)O(2) formation by wild-type V. cholerae cells (30.9 nmol min(-1) mg(-1)) were threefold higher than rates observed with the mutant strain lacking the Na(+)-NQR (9.7 nmol min(-1) mg(-1)). Our study shows that environmental Na(+) could stimulate ubisemiquinone formation by the Na(+)-NQR and hereby enhance the production of reactive oxygen species formed during the autoxidation of reduced quinones.
    Journal of Bacteriology 06/2007; 189(10):3902-8. · 3.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported that an IkappaB-beta COOH terminal region protein (designated CTIB) was essential for the proliferation of CHO cells under acidic stress (Lao et al., 2005. J Cell Physiol 203(1):186-192). In order to investigate the mechanisms underlying the requirement of CTIB for acidic adaptation, CTIB was silenced with an RNAi technique in CHO cells. CTIB silencing resulted in those cells completely failing to proliferate and maintain intracellular pH (pHi) homeostasis at an extracellular pH (pHe) of 6.3. An increased activation of p38 MAP kinase was induced by CTIB silencing at the low pH value. CTIB was only present in the cytoplasm and co-immunoprecipitation of the cytoplasmic fraction revealed that the loss of CTIB led to a loss of p65 in the immunoprecipitate complex. CTIB silencing reduced both the decrease in p65 and the increase in p50 in the nucleus when the cells were incubated at pHe 6.3. In cells with CTIB silenced, the transcriptions of p65, p105, and IL1-beta were suppressed, and decreases in both the transcription and activity of MnSOD were observed at pHe 6.3. Suppression of these genes suggested a suppressed NF-kappaB activity since p105, IL1-beta, and MnSOD were target genes of NF-kappaB. Our data demonstrated that CTIB functioned to prevent the over-accumulation of p65 in the nucleus, ensuring the appropriate composition of the NF-kappaB complex in the nucleus to respond to stimuli under acidic conditions.
    Journal of Cellular Physiology 05/2006; 207(1):238-43. · 4.22 Impact Factor