SYBR green-based real-time quantitative PCR assay for detection of West Nile Virus circumvents false-negative results due to strain variability.

Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
Journal of Clinical Microbiology (Impact Factor: 4.23). 05/2004; 42(4):1511-8. DOI: 10.1128/JCM.42.4.1511-1518.2004
Source: PubMed

ABSTRACT Real-time quantitative PCR is used routinely for the high-throughput diagnosis of viral pathogens, such as West Nile virus (WNV). Rapidly evolving RNA viruses present a challenge for diagnosis because they accumulate mutations that may render them undetectable. To explore the effect of sequence variations on assay performance, we generated every possible single point mutation within the target region of the widely used TaqMan assay for WNV and found that the TaqMan assay failed to detect 47% of possible single nucleotide variations in the probe-binding site and was unable to detect any targets with more than two mutations. In response, we developed and validated a less expensive assay with the intercalating dye SYBR green. The SYBR green-based assay was as sensitive as the TaqMan assay for WNV. Importantly, it detected 100% of possible WNV target region variants. The assay developed here adds an additional layer of protection to guard against false-negative results that result from natural variations or drug-directed selection and provides a rapid means to identify such variants for subsequent detailed analysis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The production of microcystin toxins by cyanobacteria is an intrapopulation feature and the toxic and nontoxic genotypes can be separated only through molecular analyses targeting the mcy markers. Quantitative real-time PCR (qPCR) is a procedure that has been established, not only to detect but to specifically quantify these genotypes. In the present work, primers were designed for the mcyD region to estimate the number of cyanobacteria that are potential microcystin producers. Laboratory tests to verify the efficiency and the specificity of the primers were performed. The methodology was first established for single strain cultures and thereafter was applied in environmental water samples, from a reservoir located in the Brazilian savannah (“cerrado”). The results were very satisfactory, demonstrating the high efficiency and the specificity of the primers used, and their ability to detect different cyanobacteria genera. Of particular interest were the results showing a high proportion of toxic strains (as high as 100 %) in the environmental samples, as previously reported in another tropical system. Furthermore, the occurrence of a smaller fraction of toxic strains at high cyanobacteria densities, and of more toxic populations when fewer cyanobacteria were present, deserves further investigation. Although records of cyanobacteria blooms are very common in the tropics and suggest an increasing incidence of toxic populations, the present research is one of the few applying qPCR in a tropical environment. The results obtained here, by a technique that allows a more precise quantification and in situ follow-up of changes in toxicity, will make possible new observations of seasonal and spatial dynamics in these environments.
    Journal of Applied Phycology 10/2013; 25(5):1545. DOI:10.1007/s10811-013-9996-4 · 2.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infectious diarrhoeal diseases represent a major socio-economic burden to humans, and are linked to a range of pathogens, including viruses, bacteria and protists. The accurate detection of such pathogens is central to control. However, detection often relies on methods that have limited diagnostic sensitivity and specificity. Here, we assessed an automated, robotic platform for the simultaneous detection of eight major pathogens associated with infectious diarrhoea. Genomic DNA samples (n = 167) from faeces from humans with diarrhoea and diagnosed as cryptosporidiosis, and 100 uninfected control subjects, were tested for adenovirus 40/41, norovirus, Clostridium difficile, Campylobacter, Salmonella, Shigella, Cryptosporidium and Giardia by multiplexed-tandem PCR, and also characterized by single-strand conformation polymorphism analysis (SSCP) and selective sequencing. All 167 samples tested positive for Cryptosporidium, five for adenovirus 40/41, four for Campylobacter, three for C. difficile and seven for Shigella spp., with no false positive results for any assay. The automated PCR exhibited a high sensitivity, with <10 individual pathogens being readily detected. The robotic detection platform assessed here represents a sensitive, high-throughput tool for key pathogens linked to infectious diarrhoea in humans. This platform requires little molecular biological expertise and is well suited to various diagnostic facilities and settings.
    Molecular and Cellular Probes 10/2011; 26(1):11-5. DOI:10.1016/j.mcp.2011.10.004 · 1.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: West Nile virus (WNV) causes significant morbidity and mortality worldwide. Transplant and transfusion recipients as well as the elderly are particularly at risk. WNV shows strain variation from season to season and from locale to locale. This poses a significant problem for diagnosis. Most assays use a single primer pair to detect WNV by QPCR, and can fail to detect novel stains. To overcome this limitation, a genome-wide, multiple primer-based real-time QPCR assay was developed for WNV. The same assay can be used for quantitation, viral variant discovery as well as for amplification of the entire viral genome using a single annealing temperature. It improves upon routine diagnosis as well as facilitates laboratory investigations of the pathology of WNV.
    Journal of virological methods 10/2010; 169(1):103-11. DOI:10.1016/j.jviromet.2010.07.005 · 1.88 Impact Factor