Arithmetic and the brain.

Institut National de la Santé et de la Recherche Médicale unit 562 Cognitive neuroimaging, Service Hospitalier Frederic Joliot, Commissariat à l'énergie atomique/DRM/DSV, 4 Place du general Leclerc, 91401 Orsay cedex, France.
Current Opinion in Neurobiology (Impact Factor: 6.77). 05/2004; 14(2):218-24. DOI: 10.1016/j.conb.2004.03.008
Source: PubMed

ABSTRACT Recent studies in human neuroimaging, primate neurophysiology, and developmental neuropsychology indicate that the human ability for arithmetic has a tangible cerebral substrate. The human intraparietal sulcus is systematically activated in all number tasks and could host a central amodal representation of quantity. Areas of the precentral and inferior prefrontal cortex also activate when subjects engage in mental calculation. A monkey analogue of these parieto-frontal regions has recently been identified, and a neuronal population code for number has been characterized. Finally, pathologies of this system, leading to acalculia in adults or to developmental dyscalculia in children, are beginning to be understood, thus paving the way for brain-oriented intervention studies.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Research on language processing has shown that the disruption of conceptual integration gives rise to specific patterns of event-related brain potentials (ERPs)-N400 and P600 effects. Here, we report similar ERP effects when adults performed cross-domain conceptual integration of analogous semantic and mathematical relations. In a problem-solving task, when participants generated labeled answers to semantically aligned and misaligned arithmetic problems (e.g., 6 roses + 2 tulips = ? vs. 6 roses + 2 vases = ?), the second object label in misaligned problems yielded an N400 effect for addition (but not division) problems. In a verification task, when participants judged arithmetically correct but semantically misaligned problem sentences to be "unacceptable," the second object label in misaligned sentences elicited a P600 effect. Thus, depending on task constraints, misaligned problems can show either of two ERP signatures of conceptual disruption. These results show that well-educated adults can integrate mathematical and semantic relations on the rapid timescale of within-domain ERP effects by a process akin to analogical mapping. © 2015 Cognitive Science Society, Inc.
    Cognitive Science A Multidisciplinary Journal 04/2015; DOI:10.1111/cogs.12238 · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study explores electroencephalography (EEG) brain dynamics associated with mathematical problem solving. EEG and solution latencies (SLs) were recorded as 11 neurologically healthy volunteers worked on intellectually challenging math puzzles that involved combining four single-digit numbers through basic arithmetic operators (addition, subtraction, division, multiplication) to create an arithmetic expression equaling 24. Estimates of EEG spectral power were computed in three frequency bands - θ (4-7 Hz), α (8-13 Hz) and β (14-30 Hz) - over a widely distributed montage of scalp electrode sites. The magnitude of power estimates was found to change in a linear fashion with SLs - that is, relative to a base of power spectrum, theta power increased with longer SLs, while alpha and beta power tended to decrease. Further, the topographic distribution of spectral fluctuations was characterized by more pronounced asymmetries along the left-right and anterior-posterior axes for solutions that involved a longer search phase. These findings reveal for the first time the topography and dynamics of EEG spectral activities important for sustained solution search during arithmetical problem solving.
    International Journal of Neural Systems 03/2015; 25(2):1550004. DOI:10.1142/S0129065715500045 · 6.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the spectral power of the cortical bands in patients with first episode schizophrenia and schizoaffective disorder at rest and during the performance of a mental arithmetic task. We analyzed EEG spectral power (SP) in the resting state and subsequently while counting down from 200 in steps of 7, in 32 first episode schizophrenia patients (SZ), 32 patients with first episode schizoaffective disorder (SA) and healthy controls (HC, n=40). Behavioral parameters such as accuracy and counting speed were also evaluated. Both SZ and SA patients were slower in counting than HC, no difference was obtained in the accuracy and counting speed in the patient groups. In the resting state patients showed elevated midline theta power, off-midline anterior beta 2 power and decreased central/posterior alpha power. The SA group occupied an intermediate position between the schizophrenia patients and controls. In task performance patients lacked a typical increase of midline theta, left anterior beta 2, and anterior gamma power; however, schizoaffective patients demonstrated a growing trend of power in the gamma band in left anterior off-midline sites similar to HC. Moreover, alpha power was less inhibited in schizoaffective patients and more pronounced in schizophrenia patients indicating distinct inhibitory mechanisms in these psychotic disorders. Patients with SA demonstrate less alteration in the spectral power of bands at rest than SZ, and present spectral power changes during cognitive task performance close to the controls. Our study contributes to the present evidence on the neurophysiological distinction between schizophrenia and schizoaffective disorder. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
    Clinical Neurophysiology 02/2015; DOI:10.1016/j.clinph.2014.12.031 · 2.98 Impact Factor

Full-text (2 Sources)

Available from
May 27, 2014