Gene expression profiling of rat livers reveals indicators of potential adverse effects

National Center for Toxicogenomics, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, North Carolina 27709, USA.
Toxicological Sciences (Impact Factor: 3.85). 08/2004; 80(1):193-202. DOI: 10.1093/toxsci/kfh145
Source: PubMed


This study tested the hypothesis that gene expression profiling can reveal indicators of subtle injury to the liver induced by a low dose of a substance that does not cause overt toxicity as defined by conventional criteria of toxicology (e.g., abnormal clinical chemistry and histopathology). For the purpose of this study we defined this low dose as subtoxic, i.e., a dose that elicits effects which are below the detection of conventional toxicological parameters. Acetaminophen (APAP) was selected as a model hepatotoxicant because (1) considerable information exists concerning the mechanism of APAP hepatotoxicity that can occur following high doses, (2) intoxication with APAP is the leading cause of emergency room visits involving acute liver failure within the United States, and (3) conventional clinical markers have poor predictive value. Rats treated with a single dose of 0, 50, 150, or 1500 mg/kg APAP were examined at 6, 24, or 48 h after exposure for conventional toxicological parameters and for gene expression alterations. Patterns of gene expression were found which indicated cellular energy loss as a consequence of APAP toxicity. Elements of these patterns were apparent even after exposure to subtoxic doses. With increasing dose, the magnitude of changes increased and additional members of the same biological pathways were differentially expressed. The energy loss suggested by gene expression changes was confirmed at the 1500 mg/kg dose exposure by measuring ATP levels. Only by ultrastructural examination could any indication of toxicity be identified after exposure to a subtoxic dose of APAP and that was occasional mitochondrial damage. In conclusion, this study provides evidence that supports the hypothesis that gene expression profiling may be a sensitive means of identifying indicators of potential adverse effects in the absence of the occurrence of overt toxicity.

Download full-text


Available from: Richard Paules, Sep 10, 2014
  • Source
    • "Importantly, under overnight fasting conditions, a significant difference in liver injury among wildtype and HCV-Tg mice was observed when 200 mg/kg of acetaminophen was administered for 24 h. The mitochondria are an early target for and a sensitive bellwether of acetaminophen-induced liver injury (Heinloth et al., 2004). Acetaminophen-induced mitochondrial dysfunction has been reported in vivo in mice (Jaeschke and Bajt, 2006), in vitro in human metabolically-active HepaRG cells (McGill et al., 2011), and in human subjects (McGill et al., 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 hrs after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility.
    Toxicology and Applied Pharmacology 11/2012; 266(2). DOI:10.1016/j.taap.2012.11.019 · 3.71 Impact Factor
  • Source
    • "Previous hepatotoxicity studies have described similar alterations of GAPDH and ACTB associated to AA and CT exposure, respectively. Heinloth et al. [45] found a significant up-regulation of GAPDH expression following the 24 and 48 h exposure of rats to a high dose of AA (1500 mg/kg). Additionally, Armendariz-Borunda et al [46] found an approximately two fold increase in the ACTB transcript 24 h after CT treatment in rats. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatotoxicity is associated with major changes in liver gene expression induced by xenobiotic exposure. Understanding the underlying mechanisms is critical for its clinical diagnosis and treatment. MicroRNAs are key regulators of gene expression that control mRNA stability and translation, during normal development and pathology. The canonical technique to measure gene transcript levels is Real-Time qPCR, which has been successfully modified to determine the levels of microRNAs as well. However, in order to obtain accurate data in a multi-step method like RT-qPCR, the normalization with endogenous, stably expressed reference genes is mandatory. Since the expression stability of candidate reference genes varies greatly depending on experimental factors, the aim of our study was to identify a combination of genes for optimal normalization of microRNA and mRNA qPCR expression data in experimental models of acute hepatotoxicity. Rats were treated with four traditional hepatotoxins: acetaminophen, carbon tetrachloride, D-galactosamine and thioacetamide, and the liver expression levels of two groups of candidate reference genes, one for microRNA and the other for mRNA normalization, were determined by RT-qPCR in compliance with the MIQE guidelines. In the present study, we report that traditional reference genes such as U6 spliceosomal RNA, Beta Actin and Glyceraldehyde-3P-dehydrogenase altered their expression in response to classic hepatotoxins and therefore cannot be used as reference genes in hepatotoxicity studies. Stability rankings of candidate reference genes, considering only those that did not alter their expression, were determined using geNorm, NormFinder and BestKeeper software packages. The potential candidates whose measurements were stable were further tested in different combinations to find the optimal set of reference genes that accurately determine mRNA and miRNA levels. Finally, the combination of MicroRNA-16/5S Ribosomal RNA and Beta 2 Microglobulin/18S Ribosomal RNA were validated as optimal reference genes for microRNA and mRNA quantification, respectively, in rat models of acute hepatotoxicity.
    PLoS ONE 05/2012; 7(5):e36323. DOI:10.1371/journal.pone.0036323 · 3.23 Impact Factor
  • Source
    • "Toxicogenomics is a relatively new tool incorporating genomics and proteomics and can prove useful in short-term drug toxicity studies because gene and protein changes can be detected before drug induced morphologic changes [15]. A study involving acetaminophen toxicity demonstrated that gene expression profiling serves as an important indicator of potential toxic effects in the absence of apparent toxicity [16]. Collection of samples for gene expression analysis is not done routinely in exploratory toxicology studies. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Traditional assessment of drug-induced hepatotoxicity includes morphological examination of the liver and evaluation of liver enzyme activity in serum. The objective of the study was to determine the origin of drug-related elevation in serum alanine aminotransferase (ALT) activity in the absence of morphologic changes in the liver by utilizing molecular and immunohistochemical techniques. Sixteen female Sprague-Dawley rats were divided into 2 groups (control and treated, n = 4 per group) and treated rats were dosed orally twice daily (400 mg/kg/day) for 7 days with a VEGFR-2 compound (AG28262), which in a previous study caused ALT elevation without morphological changes. Serum of both treated and control animals were evaluated on day 3 of treatment and at day 8. Three separate liver lobes (caudate, right medial, and left lateral) were examined for determination of ALT tissue activity, ALT gene expression and morphological changes. ALT activity was significantly (p < 0.01) elevated on day 3 and further increased on day 8. Histologic changes or increase in TUNEL and caspase3 positive cells were not observed in the liver lobes examined. ALT gene expression in the caudate lobe was significantly up-regulated by 63%. ALT expression in the left lateral lobe was not significantly affected. Statistically significant increased liver ALT enzymatic activity occurred in the caudate (96%) and right medial (41%) lobes but not in the left lateral lobe. AG28262, a VEFG-r2 inhibitor, causes an increase in serum ALT, due in part to both gene up-regulation. Differences between liver lobes may be attributable to differential distribution of blood from portal circulation. Incorporation of molecular data, such as gene and protein expression, and sampling multiple liver lobes may shed mechanistic insight to the evaluation of hepatotoxicity.
    Comparative Hepatology 08/2011; 10(1):8. DOI:10.1186/1476-5926-10-8 · 1.88 Impact Factor
Show more