ZIP kinase is responsible for the phosphorylation of myosin II and necessary for cell motility in mammalian fibroblasts

Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655
The Journal of Cell Biology (Impact Factor: 9.69). 05/2004; 165(2):243-54. DOI: 10.1083/jcb.200309056
Source: PubMed

ABSTRACT Reorganization of actomyosin is an essential process for cell migration and myosin regulatory light chain (MLC20) phosphorylation plays a key role in this process. Here, we found that zipper-interacting protein (ZIP) kinase plays a predominant role in myosin II phosphorylation in mammalian fibroblasts. Using two phosphorylation site-specific antibodies, we demonstrated that a significant portion of the phosphorylated MLC20 is diphosphorylated and that the localization of mono- and diphosphorylated myosin is different from each other. The kinase responsible for the phosphorylation was ZIP kinase because (a) the kinase in the cell extracts phosphorylated Ser19 and Thr18 of MLC20 with similar potency; (b) immunodepletion of ZIP kinase from the cell extracts markedly diminished its myosin II kinase activity; and (c) disruption of ZIP kinase expression by RNA interference diminished myosin phosphorylation, and resulted in the defect of cell polarity and migration efficiency. These results suggest that ZIP kinase is critical for myosin phosphorylation and necessary for cell motile processes in mammalian fibroblasts.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Rho-associated kinase (ROCK) and zipper-interacting protein kinase (ZIPK) have been implicated in diverse physiological functions. ROCK1 phosphorylates and activates ZIPK suggesting that at least some of these physiological functions may require both enzymes. To test the hypothesis that sequential activation of ROCK1 and ZIPK is commonly involved in regulatory pathways, we utilized siRNA to knock down ROCK1 and ZIPK in cultured human arterial smooth muscle cells (SMC). Microarray analysis using a whole-transcript expression chip identified changes in gene expression induced by ROCK1 and ZIPK knockdown. ROCK1 knockdown affected the expression of 553 genes, while ZIPK knockdown affected the expression of 390 genes. A high incidence of regulation of transcription regulator genes was observed in both knockdowns. Other affected groups included transporters, kinases, peptidases, transmembrane and G protein-coupled receptors, growth factors, phosphatases and ion channels. Only 76 differentially expressed genes were common to ROCK1 and ZIPK knockdown. Ingenuity Pathway Analysis identified five pathways shared between the two knockdowns. We focused on cytokine signaling pathways since ROCK1 knockdown up-regulated 5 and down-regulated 4 cytokine genes, in contrast to ZIPK knockdown, which affected the expression of only two cytokine genes (both down-regulated). IL-6 gene expression and secretion of IL-6 protein were up-regulated by ROCK1 knockdown, whereas ZIPK knockdown reduced IL-6 mRNA expression and IL-6 protein secretion and increased ROCK1 protein expression, suggesting that ROCK1 may inhibit IL-6 secretion. IL-1β mRNA and protein levels were increased in response to ROCK1 knockdown. Differences in the effects of ROCK1 and ZIPK knockdown on cell cycle regulatory genes suggested that ROCK1 and ZIPK regulate the cell cycle by different mechanisms. ROCK1, but not ZIPK knockdown reduced the viability and inhibited proliferation of vascular SMC. We conclude that ROCK1 and ZIPK have diverse, but predominantly distinct regulatory functions in vascular SMC and that ROCK1-mediated activation of ZIPK is not involved in most of these functions.
    PLoS ONE 02/2015; 10(2):e0116969. DOI:10.1371/journal.pone.0116969 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zipper-interacting protein kinase (ZIPK) is known to regulate several functions such as apoptosis, smooth muscle contraction, and cell migration. While exogenously expressed GFP-ZIPK localizes to the cleavage furrow, role of ZIPK in cytokinesis is obscure. Here, we show that ZIPK is a major MRLC kinase during mitosis. Moreover, ZIPK siRNA-mediated knockdown causes delay of cytokinesis. The delay in cytokinesis of ZIPK-knockdown cells was rescued by the exogenous diphosphorylation-mimicking MRLC mutant. Taken together, these findings suggest that ZIPK plays a role in the progression and completion of cytokinesis through MRLC phosphorylation. Copyright © 2015. Published by Elsevier Inc.
    Biochemical and Biophysical Research Communications 03/2015; 459(4). DOI:10.1016/j.bbrc.2015.03.005 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Unidirectional zippering is a key step in neural tube closure that remains poorly understood. Here, we combine experimental and computational approaches to identify the mechanism for zippering in a basal chordate, Ciona intestinalis. We show that myosin II is activated sequentially from posterior to anterior along the neural/epidermal (Ne/Epi) boundary just ahead of the advancing zipper. This promotes rapid shortening of Ne/Epi junctions, driving the zipper forward and drawing the neural folds together. Cell contact rearrangements (Ne/Epi + Ne/Epi → Ne/Ne + Epi/Epi) just behind the zipper lower tissue resistance to zipper progression by allowing transiently stretched cells to detach and relax toward isodiametric shapes. Computer simulations show that measured differences in junction tension, timing of primary contractions, and delay before cell detachment are sufficient to explain the speed and direction of zipper progression and highlight key advantages of a sequential contraction mechanism for robust efficient zippering. Copyright © 2015 Elsevier Inc. All rights reserved.
    Developmental Cell 01/2015; 32(2):241-55. DOI:10.1016/j.devcel.2014.12.017 · 10.37 Impact Factor