Article

An embryonic-specific repressor element located 3' to the Agamma-globin gene influences transcription of the human beta-globin locus in transgenic mice.

Department of Basic Sciences, University of Crete School of Medicine, Heraklion, Greece.
Experimental Hematology (Impact Factor: 2.81). 03/2004; 32(2):224-33. DOI: 10.1016/j.exphem.2003.11.001
Source: PubMed

ABSTRACT Persistent expression of the human fetal gamma-globin genes in the adult stage is often associated with naturally occurring deletions in the human beta-globin locus. The mapping of the 5' breakpoints of these deletions within the Agamma- to delta-globin intergenic region has suggested that regulatory elements involved in the silencing of the gamma-globin genes in the adult may be present. We previously identified two elements in this region, termed Enh and F, located 3' to the Agamma-globin gene acting as silencers in transient transfection assays. Here, we tested directly the in vivo significance of these elements in the developmental regulation of the human beta-like globin genes. MATERIALS AND METHODS. We selectively deleted both Enh and F elements in the context of a 185-kb human beta-globin locus PAC (P1 phage artificial chromosome) and tested the effects of this deletion on the expression of the human P-like globin genes in transgenic mice.
The Enh/F deletion resulted in an increase in epsilon- and gamma-globin mRNA levels in the embryonic yolk sac stage of erythropoiesis, which appears to be due to an increase in the rate of transcription rather than to an increase in the number of cells transcribing the human globin locus. However, the human developmental switching from fetal gamma-globin to adult beta-globin gene expression in transgenic mice was not affected by this deletion.
These results identify Enh and F as locus-wide regulatory elements capable of down-regulating transcription of the human beta-globin locus in an embryonic-specific manner.

0 Bookmarks
 · 
80 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A sensitive, ubiquitously expressed tetracycline inducible system would be a valuable tool in mouse transgenesis. However, this has been difficult to obtain due to position effects observed at different chromosomal sites of transgene integration, which negatively affect expression in many tissues. The aim of this study was to test the utility of a mammalian methylation-free CpG island to drive ubiquitous expression of the sensitive doxycycline (Dox) inducible rtTA2S-M2 Tet-transactivator in transgenic mice. An 8 kb genomic fragment from the methylation-free CpG island of the human hnRNPA2B1-CBX3 housekeeping gene locus was tested. In a number of transgenic mouse lines obtained, rtTA2S-M2 expression was detected in many tissues examined. Characterisation of the highest expressing rtTA2S-M2 transgenic mouse line demonstrated Dox-inducible GFP transgene expression in many tissues. Using this line we also show highly sensitive quantitative induction with low doses of Dox of an assayable plasma protein transgene under the control of a Tet Responsive Element (TRE). The utility of this rtTA2S-M2 line for inducible expression in mouse embryos was also demonstrated using a GATA-6 Tet-inducible transgene to show specific phenotypes in the embryonic lung, as well as broader effects resulting from the inducible widespread overexpression of the transgene. The ubiquitously expressing rtTA2S-M2 transgenic mouse line described here provides a very useful tool for studying the effects of the widespread, inducible overexpression of genes during embryonic development and in adult mice.
    BMC Developmental Biology 02/2007; 7:108. · 2.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural deletions of the human gamma-globin gene cluster lead to specific syndromes characterized by increased production of fetal hemoglobin in adult life and provide a useful model to delineate novel cis-acting elements involved in the developmental control of hemoglobin switching. A hypothesis accounting for these phenotypic features assumes that silencers located within the Agamma-to delta-gene region are deleted in hereditary persistence of fetal hemoglobin (HPFH) and deltabeta-thalassemias, leading to failure of switching. In the present study, we sought to clarify the in vivo role of two elements, termed Enh and F, located 3' to the Agamma-globin, in silencing the fetal genes. To this end, we generated three transgenic lines using cosmid constructs containing the full length of the globin locus control region (LCR) linked to the 3.3-kb Agamma-gene lacking both the Enh and F elements. The Enh/F deletion resulted in high levels of Agamma-globin gene expression in adult mice in all single copy lines, whereas, the LCR-Agamma single copy lines which retain the Enh and F elements exhibited complete normal switching of the fetal Agamma-gene. Our study documents directly for the first time the in vivo role of these two gene-proximal negative regulatory elements in silencing the fetal globin gene in the perinatal period, and thus these data may permit their eventual exploitation in therapeutic approaches for thalassemias.
    Molecular Medicine 09/2009; 15(11-12):415-24. · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: STAT5 controls essential cellular functions and is encoded by two genes, Stat5a and Stat5b. To provide insight to the mechanisms linking hematologic malignancy to STAT5 activation/regulation of target genes, we identified STAT5 target genes and focused on Dpf3 gene, which encodes for an epigenetic factor. Dpf3 expression was induced upon IL-3 stimulation in Ba/F3 cells, while strong binding of both STAT5a and STAT5b was detected in its promoter. Reduced expression of Dpf3 was detected in Ba/F3 cells with Stat5a and Stat5b knock-down, suggesting that this gene is positively regulated by STAT5, upon IL-3 stimulation. Furthermore, this gene was significantly up-regulated in CLL patients, where DPF3 gene/protein up-regulation and strong STAT5 binding to the DPF3 promoter, correlated with increased STAT5 activation, mainly in non-malignant myeloid cells (granulocytes). Our findings provide insights in the STAT5 dependent transcriptional regulation of Dpf3, and demonstrate for the first time increased STAT5 activation in granulocytes of CLL patients. Novel routes of investigation are opened to facilitate the understanding of the role of STAT5 activation in the communication between non-malignant myeloid and malignant B-cells, and the functions of STAT5 target genes networks in CLL biology.
    PLoS ONE 10/2013; 8(10):e76155. · 3.53 Impact Factor

Full-text

Download
16 Downloads
Available from
May 27, 2014