Article

Structure of 9-amino-[N-(2-dimethylamino)propyl]acridine-4-carboxamide bound to d(CGTACG)(2): a comparison of structures of d(CGTACG)(2) complexed with intercalators in the presence of cobalt

Faculty of Medical and Health Sciences, University of Auckland, Окленд, Auckland, New Zealand
Acta Crystallographica Section D Biological Crystallography (Impact Factor: 7.23). 06/2004; 60(Pt 5):823-8. DOI: 10.1107/S0907444904003907
Source: PubMed

ABSTRACT The structure of the complex formed between 9-amino-[N-(2-dimethylamino)propyl]acridine-4-carboxamide and d(CGTACG)(2) has been refined to a resolution of 1.55 A. The complex crystallized in space group C222. An asymmetric unit comprises two strands of DNA, one disordered drug molecule, two cobalt(II) ions, two magnesium ions and 32 water molecules. The DNA helices stack in continuous columns, with their four central base pairs adopting a B-like motif. The terminal G.C base pairs engage in different interactions. At one end of the duplex there is a CpG dinucleotide overlap modified by ligand intercalation and terminal cytosine exchange between symmetry-related duplexes. An intercalation complex is formed involving four DNA duplexes, four disordered ligand molecules and two pairs of base tetrads. The other end of the DNA is frayed, with the terminal guanine lying in the minor groove of the next duplex in the column. The structure is stabilized by guanine N7-cobalt(II) coordination. The structure is compared with previously published isomorphous structures of d(CGTACG)(2) complexed with intercalators in the presence of cobalt and it is concluded that the formation of this crystal form is primarily determined by DNA-DNA interactions and packing forces, rather than by special interactions between the ligand and the DNA. Given the nature of the ligands found in these complexes, the relevance of the quadruplex structure to the biological activity of those agents, known to be topoisomerase poisons, is questioned.

Download full-text

Full-text

Available from: Laurence Patrick George Wakelin, Jan 07, 2015
0 Followers
 · 
61 Views
 · 
8 Downloads
  • Source
    • "Studies on pyrazoloacridines [25], imidazoacridinones [26], anthrapyrazoles [27], acridine carboxamides [28] and triazoloacridinones [29] are the most representative examples of the research in this area. These molecules have primarily been explored as chemotherapeutic agents (anticancer, antibacterial, antiprotozoal), because of the ability of the acridine chromophore to intercalate DNA (The acridine moieties are held in place by van der Waals forces supplemented by stronger ionic bonds to the phosphate ions of the DNA backbone) and inhibit topoisomerase and telomerase enzymes [7] [28] [30]. Research continues to be focussed primarily in these areas, but latter work shows they are active also as anticholinesterase agents [30]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Acridine group of dyes are well known in the field of development of probes for nucleic acid structure and conformational determination because of their relevance in the development of novel chemotherapeutic agents, footprinting agents and for gene manipulation in biotechnology and medicine. Here, we report the interaction of 9-N,N-dimethylaniline decahydroacridinedione (DMAADD), a new class of dye molecule with calf thymus DNA (CT-DNA) which has been studied extensively by means of traditional experimental and theoretical techniques. The changes in the base stacking of CT-DNA upon the binding of DMAADD are reflected in the circular dichroic (CD) spectral studies. Competitive binding study shows that the enhanced emission intensity of ethidium bromide (EB) in presence of DNA was quenched by the addition of DMAADD indicating that it displaces EB from its binding site in DNA and the apparent binding constant has been estimated to be (3.3+/-0.2)x10(5) M(-1). This competitive binding study and further fluorescence experiments reveal that DMAADD is a moderate binder of CT-DNA, while viscosity measurements show that the mode of binding is partial intercalation. Generally, one would expect increase in the melting temperature (T(m)) of DNA in presence of intercalators. Interestingly, an unusual decrease in melting temperature (DeltaT(m) of -4+/-0.2 degrees C) of DNA by the addition of DMAADD was observed. From our knowledge such a decreasing trend in melting point was not reported before for all the possible modes of binding. Molecular modeling gave the pictorial view of the binding model which clearly shows that of the various mode of binding, the dye prefers the major groove binding to the sites rich in GC residues and to the sites rich in AT residues it prefers intercalation mode of binding either through major or minor groove with the inclusion of the N,N-dimethylaniline (DMA) group inside the double helix which has been stacked in between the bases, under physiological relevant pH of 7.5.
    Biochimica et Biophysica Acta 01/2007; 1760(12):1794-801. DOI:10.1016/j.bbagen.2006.08.011 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The crystal structures of the hexamer duplex d(CGTACG)(2) complexed with the intercalating anthraquinone derivative 1,5-bis[3-(diethylamino)propionamido]anthracene-9,10-dione and the acridine derivative 9-acridinyl tetralysine have been solved at 2.0- and 1.4-A resolution, respectively. In both cases, the drugs adopt multiple orientations within a large DNA cavity constituted by two groups of four approximately coplanar bases. Cations play a pivotal role in the crystal structure. Both complexes crystallise in the presence of Co(2+), Ba(2+) and Na(+) ions. They reveal at least two different types of coordination environments: (1) specific sites for Co(2+) interacting with N7 of guanine; (2) a central ionic site formed by four phosphate groups, which can be occupied by different ions. One more ionic site that is not always occupied by ions is also visible in the electron density map. All of them play a role in the crystal structure.
    JBIC Journal of Biological Inorganic Chemistry 09/2005; 10(5):476-82. DOI:10.1007/s00775-005-0655-3 · 3.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acridine-4-carboxamides form a class of known DNA mono-intercalating agents that exhibit cytotoxic activity against tumour cell lines due to their ability to inhibit topoisomerases. Previous studies of bis-acridine derivatives have yielded equivocal results regarding the minimum length of linker necessary between the two acridine chromophores to allow bis-intercalation of duplex DNA. We report here the 1.7 A resolution X-ray crystal structure of a six-carbon-linked bis(acridine-4-carboxamide) ligand bound to d(CGTACG)2 molecules by non-covalent duplex cross-linking. The asymmetric unit consists of one DNA duplex containing an intercalated acridine-4-carboxamide chromophore at each of the two CG steps. The other half of each ligand is bound to another DNA molecule in a symmetry-related manner, with the alkyl linker threading through the minor grooves. The two crystallographically independent ligand molecules adopt distinct side chain interactions, forming hydrogen bonds to either O6 or N7 on the major groove face of guanine, in contrast to the semi-disordered state of mono-intercalators bound to the same DNA molecule. The complex described here provides the first structural evidence for the non-covalent cross-linking of DNA by a small molecule ligand and suggests a possible explanation for the inconsistent behaviour of six-carbon linked bis-acridines in previous assays of DNA bis-intercalation.
    Nucleic Acids Research 02/2006; 34(22):6663-72. DOI:10.1093/nar/gkl930 · 9.11 Impact Factor
Show more