Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction.

Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA.
Psychopharmacology (Impact Factor: 3.99). 07/2004; 174(1):3-16. DOI: 10.1007/s00213-004-1793-y
Source: PubMed

ABSTRACT Reinstatement of the function of working memory, the cardinal cognitive process essential for human reasoning and judgment, is potentially the most intractable problem for the treatment of schizophrenia. Since deficits in working memory are associated with dopamine dysregulation and altered D(1) receptor signaling within prefrontal cortex, we present the case for targeting novel drug therapies towards enhancing prefrontal D(1) stimulation for the amelioration of the debilitating cognitive deficits in schizophrenia.
This review examines the role of dopamine in regulating cellular and circuit function within prefrontal cortex in order to understand the significance of the dopamine dysregulation found in schizophrenia and related non-human primate models. By revealing the associations among prefrontal neuronal function, dopamine and D(1) signaling, and cognition, we seek to pinpoint the mechanisms by which dopamine modulates working memory processes and how these mechanisms may be exploited to improve cognitive function.
Dopamine deficiency within dorsolateral prefrontal cortex leads to abnormal recruitment of this region by cognitive tasks. Both preclinical and clinical studies have demonstrated a direct relationship between prefrontal dopamine function and the integrity of working memory, suggesting that insufficient D(1) receptor signaling in this region results in cognitive deficits. Moreover, working memory deficits can be ameliorated by treatments that augment D(1) receptor stimulation, indicating that this target presents a unique opportunity for the restoration of cognitive function in schizophrenia.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanism responsible for the therapeutic effects of the prototypical atypical antipsychotic drug, clozapine, is still not understood; however, there is persuasive evidence from in vivo studies in normal rodents and primates that the ability to elevate dopamine neurotransmission preferentially in the prefrontal cortex is a key component to the beneficial effects of clozapine in schizophrenia. Theoretically, such an effect of clozapine would counteract the deficient dopaminergic innervation of the prefrontal cortex that appears to be part of the pathophysiology of schizophrenia. We have previously shown that following repeated, intermittent administrations of phencyclidine to monkeys there is lowered prefrontal cortical dopamine transmission and impairment of cognitive performance that is dependent on the prefrontal cortex; these biochemical and behavioral changes therefore model certain aspects of schizophrenia. We now investigate the effects of clozapine on the dopamine projections to prefrontal cortex, nucleus accumbens, and striatum in control monkeys and in those withdrawn from repeated phencyclidine treatment, using a dose regimen of clozapine that ameliorates the cognitive deficits described in the primate phencyclidine (PCP) model. In normal monkeys, clozapine elevated dopamine turnover in all prefrontal cortical, but not subcortical, regions analyzed. In the primate PCP model, clozapine normalized dopamine (DA) turnover in the dorsolateral prefrontal cortex, prelimbic cortex, and cingulate cortex. Thus, the present data support the hypothesis that the therapeutic effects of clozapine in this primate model and perhaps in schizophrenia may be related at least in part to the restoration of DA tone in the prefrontal cortex.
    Neuropsychopharmacology 03/2008; 33(3):491-6. DOI:10.1038/sj.npp.1301448 · 7.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Attention-deficit/hyperactivity disorder (ADHD) is related to an attenuated and dysfunctional dopamine system. Normally, a high extracellular dopamine level yields a tonic dopaminergic input that down-regulates stimuli-evoked phasic dopamine responses through autoreceptors. Abnormally low tonic extracellular dopamine in ADHD up-regulates the autoreceptors so that stimuli-evoked phasic dopamine is boosted. The authors propose that these boosted phasic responses yield hypersensitivity to environmental stimuli in ADHD. Stimuli evoking moderate brain arousal lead to well-functioning performance, whereas either too little or too much stimuli attenuate cognitive performance. Strong, salient stimuli may easily disrupt attention, whereas an environment with impoverished stimuli causes low arousal, which is typically compensated for by hyperactivity. Stochastic resonance is the phenomenon that makes a moderate noise facilitate stimulus discrimination and cognitive performance. Computational modeling shows that more noise is required for stochastic resonance to occur in dopamine-deprived neural systems in ADHD. This prediction is supported by empirical data.
    Psychological Review 11/2007; 114(4):1047-75. DOI:10.1037/0033-295X.114.4.1047 · 7.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Research on the regulation and function of ascending noradrenergic, dopaminergic, serotonergic, and cholinergic systems has focused on the organization and function of individual systems. In contrast, evidence describing co-activation and interactions between multiple neuromodulatory systems has remained scarce. However, commonalities in the anatomical organization of these systems and overlapping evidence concerning the post-synaptic effects of neuromodulators strongly suggest that these systems are recruited in concert; they influence each other and simultaneously modulate their target circuits. Therefore, evidence on the regulatory and functional interactions between these systems is considered essential for revealing the role of neuromodulators. This postulate extends to contemporary neurobiological hypotheses of major neuropsychiatric disorders. These hypotheses have focused largely on aberrations in the integrity or regulation of individual ascending modulatory systems, with little regard for the likely possibility that dysregulation in multiple ascending neuromodulatory systems and their interactions contribute essentially to the symptoms of these disorders. This review will paradigmatically focus on neuromodulator interactions in the PFC and be further constrained by an additional focus on their role in cognitive functions. Recent evidence indicates that individual neuromodulators, in addition to their general state-setting or gating functions, encode specific cognitive operations, further substantiating the importance of research concerning the parallel recruitment of neuromodulator systems and interactions between these systems.
    Progress in Neurobiology 11/2007; 83(2):69-91. DOI:10.1016/j.pneurobio.2007.06.007 · 10.30 Impact Factor