Article

PHOX2B mutations and polyalanine expansions correlate with the severity of the respiratory phenotype and associated symptoms in both congenital and late onset Central Hypoventilation syndrome

University of Groningen, Groningen, Groningen, Netherlands
Journal of Medical Genetics (Impact Factor: 5.64). 06/2004; 41(5):373-80. DOI: 10.1136/jmg.2003.015412
Source: PubMed
Download full-text

Full-text

Available from: Francesca Puppo, Jun 21, 2015
0 Followers
 · 
67 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Congenital Central Hypoventilation Syndrome (CCHS) is characterized by hypoventilation during sleep and impaired ventilatory responses to hypercapnia and hypoxemia. Most cases are sporadic and caused by de novo PHOX2B gene mutations, which are usually polyalanine repeat expansions. Physiological and neuroanatomical studies of genetically engineered mice and analyses of cellular responses to mutated Phox2b have shed light on the pathophysiological mechanisms of CCHS. Findings in Phox2b(27Ala/+) knock-in mice consisted of unstable breathing with apneas, absence of the ventilatory response to hypercapnia, death within a few hours after birth, and absence of the retrotrapezoid nucleus (RTN). Conditional mouse mutants in which Phox2b(27Ala) was targeted to the RTN also lacked the ventilatory response to hypercapnia at birth but survived to adulthood and developed a partial hypercapnia response. The therapeutic effects of desogestrel are being evaluated in clinical trials, and recent analyses of cellular responses to polyAla Phox2b aggregates have suggested new pharmacological approaches designed to counteract the toxic effects of mutated Phox2b.
    Respiratory Physiology & Neurobiology 05/2013; 189(2). DOI:10.1016/j.resp.2013.05.018 · 1.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The PHOX2B transcription factor plays a crucial role in autonomic nervous system development. In humans, heterozygous mutations of the PHOX2B gene lead to Congenital Central Hypoventilation Syndrome (CCHS), a rare disorder characterized by a broad variety of symptoms of autonomic nervous system dysfunction including inadequate control of breathing. The vast majority of patients with CCHS are heterozygous for a polyalanine repeat expansion mutation involving a polyalanine tract of twenty residues in the C-terminus of PHOX2B. Although several lines of evidence support a dominant-negative mechanism for PHOX2B mutations in CCHS, the molecular effects of PHOX2B mutant proteins on the transcriptional activity of the wild-type protein have not yet been elucidated. As one of the targets of PHOX2B is the PHOX2B gene itself, we tested the transcriptional activity of wild-type and mutant proteins on the PHOX2B gene promoter, and found that the transactivation ability of proteins with polyalanine expansions decreased as a function of the length of the expansion, whereas DNA binding was severely affected only in the case of the mutant with the longest polyalanine tract (+13 alanine). Co-transfection experiments using equimolar amounts of PHOX2B wild-type and mutant proteins in order to simulate a heterozygous state in vitro and four different PHOX2B target gene regulatory regions (PHOX2B, PHOX2A, DBH, TLX2) clearly showed that the polyalanine expanded proteins alter the transcriptional activity of wild-type protein in a promoter-specific manner, without any clear correlation with the length of the expansion. Moreover, although reduced transactivation may be caused by retention of the wild-type protein in the cytoplasm or in nuclear aggregates, this mechanism can only be partially responsible for the pathogenesis of CCHS because of the reduction in cytoplasmic and nuclear accumulation when the +13 alanine mutant is co-expressed with wild-type protein, and the fact that the shortest polyalanine expansions do not form visible cytoplasmic aggregates. Deletion of the C-terminal of PHOX2B leads to a protein that correctly localizes in the nucleus but impairs PHOX2B wild-type transcriptional activity, thus suggesting that protein mislocalization is not the only mechanism leading to CCHS. The results of this study provide novel in vitro experimental evidence of a transcriptional dominant-negative effect of PHOX2B polyalanine mutant proteins on wild-type protein on two different PHOX2B target genes.
    Neurobiology of Disease 10/2012; 50. DOI:10.1016/j.nbd.2012.10.019 · 5.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The paired-like homeobox 2B gene (PHOX2B) is the disease-defining gene for congenital central hypoventilation syndrome (CCHS). Individuals with CCHS typically present in the newborn period with alveolar hypoventilation during sleep and often during wakefulness, altered respiratory control including reduced or absent ventilatory responses to hypercarbia and hypoxemia, and autonomic nervous system (ANS) dysregulation; however, a subset of individuals present well into adulthood. Thermoregulation is altered and perception of shortness of breath is absent, but voluntary breathing is retained. Structural and functional magnetic resonance imaging (MRI) and limited post-mortem studies in subjects with CCHS reveal abnormalities in both forebrain and brainstem. MRI changes appear in the hypothalamus (responsible for thermal drive to breathing), posterior thalamus and midbrain (mediating O(2) and oscillatory motor patterns), caudal raphé and locus coeruleus (regulating serotonergic and noradrenergic systems), the lateral medulla, parabrachial pons, and cerebellum (coordinating chemoreceptor and somatic afferent activity with breathing), and insular and cingulate cortices (mediating shortness of breath perception). Structural and functional alterations in these sites may result from PHOX2B mutations or be secondary to hypoxia/perfusion alterations from suboptimal management/compliance. The study of CCHS, with collaboration between physician-scientists and basic scientists, offers a rare opportunity to investigate control of breathing within the complex physiological network of the ANS.
    Respiratory Physiology & Neurobiology 10/2010; 173(3):322-35. DOI:10.1016/j.resp.2010.06.013 · 1.97 Impact Factor