Apoptotic signaling pathways induced by nitric oxide in human lymphoblastoid cells expressing wild-type or mutant p53.

Biological Engineering Division and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA.
Cancer Research (Impact Factor: 9.28). 06/2004; 64(9):3022-9. DOI: 10.1158/0008-5472.CAN-03-1880
Source: PubMed

ABSTRACT Loss of p53 function by inactivating mutations results in abrogation of NO*induced apoptosis in human lymphoblastoid cells. Here we report characterization of apoptotic signaling pathways activated by NO* in these cells by cDNA microarray expression and immunoblotting. A p53-mediated transcriptional response to NO* was observed in p53-wild-type TK6, but not in closely related p53-mutant WTK1, cells. Several previously characterized p53 target genes were up-regulated transcriptionally in TK6 cells, including phosphatase PPM1D (WIP1), oxidoreductase homolog PIG3, death receptor TNFRSF6 (Fas/CD95), and BH3-only proteins BBC3 (PUMA) and PMAIP1 (NOXA). NO* also modulated levels of several gene products in the mitochondria-dependent and death-receptor-mediated apoptotic pathways. Inhibitors of apoptosis proteins X-chromosome-linked inhibitor of apoptosis, cellular inhibitor of apoptosis protein-1, and survivin were significantly down-regulated in TK6 cells, but not in WTK1 cells. Smac release from mitochondria was induced in both cell types, but release of apoptosis-inducing factor and endonuclease G was detected only in TK6 cells. Fas/CD95 was increased, and levels of the antiapoptotic proteins Bcl-2 and Bcl-x/L were reduced in TK6 cells. Activation of procaspases 3, 8, 9, and 10, as well as Bid and poly(ADP-ribose) polymerase cleavage, were observed only in TK6 cells. NO* treatment did not alter levels of death receptors 4 and 5, Fas-associated death domain or proapoptotic Bax and Bak proteins in either cell line. Collectively, these data show that NO* exposure activated a complex network of responses leading to p53-dependent apoptosis via both mitochondrial and Fas receptor pathways, which were abrogated in the presence of mutant p53.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a major constituent of rhubarb, has a wide range of therapeutic applications. Recent studies have shown that emodin can induce or prevent cell apoptosis, although the precise molecular mechanisms underlying these effects are unknown. Experiments from the current study revealed that emodin (10-20 μM) induces apoptotic processes in the human neuroblastoma cell line, IMR-32, but exerts no injury effects at treatment doses below 10 μM. Treatment with emodin at concentrations of 10-20 μM led to a direct increase in the reactive oxygen species (ROS) content in IMR-32 cells, along with significant elevation of cytoplasmic free calcium and nitric oxide (NO) levels, loss of mitochondrial membrane potential (MMP), activation of caspases-9 and -3, and cell death. Pretreatment with nitric oxide (NO) scavengers suppressed the apoptotic biochemical changes induced by 20 μM emodin, and attenuated emodin-induced p53 and p21 expression involved in apoptotic signaling. Our results collectively indicate that emodin at concentrations of 10-20 μM triggers apoptosis of IMR-32 cells via a mechanism involving both ROS and NO. Based on the collective results, we propose a model for an emodin-triggered apoptotic signaling cascade that sequentially involves ROS, Ca2+, NO, p53, caspase-9 and caspase-3.
    International Journal of Molecular Sciences 10/2013; 14(10):20139-20156. DOI:10.3390/ijms141020139 · 2.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ionizing radiation increases cell mortality in a dose-dependent manner. Increases in DNA double strand breaks, γ-H2AX, p53 phophorylation, and protein levels of p53 and Bax also occur. We investigated the ability of ciprofloxacin (CIP), a widely prescribed antibiotic, to inhibit DNA damage induced by ionizing radiation. Human tumor TK6, NH32 (p53−/− of TK6) cells, and human normal peripheral blood mononuclear cells (PBMCs) were exposed to 2–8 Gy 60Co-γ-photon radiation. γ-H2AX (an indicator of DNA strand breaks), phosphorylated p53 (responsible for cell-cycle arrest), Bcl-2 (an apoptotic protein, and cell death were measured. Ionizing irradiation increased γ-H2AX amounts in TK6 cells (p53+/+) within 1 h in a radiation dose-dependent manner. CIP pretreatment and posttreatment effectively inhibited the increase in γ-H2AX. CIP pretreatment reduced Bcl-2 production but promoted p53 phosphorylation, caspase-3 activation and cell death. In NH32 cells, CIP failed to significantly inhibit the radiation-induced γ-H2AX increase, suggesting that CIP inhibition involves in p53-dependent mechanisms. In normal healthy human PBMCs, CIP failed to block the radiation-induced γ-H2AX increase but effectively increased Bcl-2 production, but blocked the phospho-p53 increase and subsequent cell death. CIP increased Gadd45α, and enhanced p21 protein 24 h postirradiation. Results suggest that CIP exerts its effect in TK6 cells by promoting p53 phosphorylation and inhibiting Bcl-2 production and in PBMCs by inhibiting p53 phosphorylation and increasing Bcl-2 production. Our data are the first to support the view that CIP may be effective to protect normal tissue cells from radiation injury, while enhancing cancer cell death in radiation therapy.
    Molecular and Cellular Biochemistry 08/2014; 393(1-2). DOI:10.1007/s11010-014-2053-z · 2.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Molecular classification of breast cancer is based, in part, on the presence or absence of amplification of the human epidermal growth factor receptor 2 (ERBB2) gene, which leads to HER2 protein overproduction. While the presence of the overexpressed HER2 protein is a necessary precondition for sensitivity to anti-HER2 therapies, many patients develop resistance. Thus, identification of the downstream effectors of this pathway will help in understanding mechanism(s) of chemoresistance and further, the identified molecules themselves may have the potential to be used as therapeutic targets. In this work, we studied the proteomic changes that accompany the HER2 gene amplification to identify potential new therapeutic targets and biomarkers. We analyzed bio-triplicate proteome samples extracted from wild-type MCF-7 human breast cancer cells and their isogenic stably overexpressing HER2 (amplified) transfectants. In total, 2455 unique proteins were quantified with 1278 of them differentially expressed in HER2 normal and HER2 overexpressing MCF-7 cells. Select biomarker candidates of particular interest were validated by western blotting, and evaluated for clinical relevance by the immunohistochemical assessment of protein abundance in breast tumor biopsies. HER2 transfection produced marked changes in proteins related to multiple aspects of cancer biology, and the identified expression patterns were recapitulated in the clinical samples.
    Journal of proteomics 07/2013; 91. DOI:10.1016/j.jprot.2013.06.034 · 3.93 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014