Article

Survival and dormancy of Mycobacterium avium subsp. paratuberculosis in the environment.

Faculty of Veterinary Science, The University of Sydney, Sydney, Australia.
Applied and Environmental Microbiology (Impact Factor: 3.95). 06/2004; 70(5):2989-3004. DOI: 10.1128/AEM.70.5.2989-3004.2004
Source: PubMed

ABSTRACT The survival of Mycobacterium avium subsp. paratuberculosis was studied by culture of fecal material sampled at intervals for up to 117 weeks from soil and grass in pasture plots and boxes. Survival for up to 55 weeks was observed in a dry fully shaded environment, with much shorter survival times in unshaded locations. Moisture and application of lime to soil did not affect survival. UV radiation was an unlikely factor, but infrared wavelengths leading to diurnal temperature flux may be the significant detrimental component that is correlated with lack of shade. The organism survived for up to 24 weeks on grass that germinated through infected fecal material applied to the soil surface in completely shaded boxes and for up to 9 weeks on grass in 70% shade. The observed patterns of recovery in three of four experiments and changes in viable counts were indicative of dormancy, a hitherto unreported property of this taxon. A dps-like genetic element and relA, which are involved in dormancy responses in other mycobacteria, are present in the M. avium subsp. paratuberculosis genome sequence, providing indirect evidence for the existence of physiological mechanisms enabling dormancy. However, survival of M. avium subsp. paratuberculosis in the environment is finite, consistent with its taxonomic description as an obligate parasite of animals.

0 Bookmarks
 · 
87 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of paratuberculosis, a chronic granulomatous enteric disease of ruminants. MAP detection by faecal culture provides the definitive diagnosis of the infection. Automated liquid systems for MAP culture are more sensitive and rapid than culture on solid media, but they are expensive and require specialised equipment. In this study, a non-automated culture method using a modified Middlebrook 7H9 liquid medium (7H9+) was compared with Herrold's solid medium (HEYM) and direct real-time PCR on dairy cattle faeces. MAP growth in 7H9+ was monitored weekly by real-time PCR until the 12th week post-inoculation. The analytical sensitivity of the three methods was evaluated using faecal samples from a healthy cow spiked with ten-fold dilutions of MAP organisms (10(4)-10(-1)) and naturally MAP-infected faeces serially diluted 1 to 10 in negative faecal samples. The limits of detection of the solid culture and direct real-time PCR were 10(2) and 10(3)MAP/g, respectively. In comparison, the 7H9+ culture revealed as few as 1MAP/g. A marked reduction in time to detection of the pathogen, compared with HEYM culture, was obtained. In addition, the three methods were applied to environmental faecal samples collected from a high- and a low-prevalence herd. The culture in 7H9+ showed to be the most sensitive test in the low-prevalence herd and provided faster results than HEYM. In the high-prevalence herd the three methods showed the same sensitivity and the real-time PCR had the shortest turnaround time. In conclusion, the use of 7H9+ for MAP-detection from cattle faeces maximizes diagnostic sensitivity and reduces turnaround time and, therefore, could replace culture in solid medium. Hence, we propose a two-step protocol for the assessment of MAP faecal excretion based on: 1) direct real-time PCR on all samples; and 2) inoculation of negative samples into 7H9+ and analysis after 3 and, if necessary, 6weeks by real-time PCR.
    Journal of microbiological methods 01/2011; 84(3):413-7. · 2.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne's disease (JD) in ruminants with substantial economic impacts to the cattle industry. Johne's disease is known for its long latency period and difficulties in diagnosis are due to insensitivities of current detection methods. Eradication is challenging as MAP can survive for extended periods within the environment, resulting in new infections in naïve animals (3). This study explored the use of a biosecure, static composting structure to inactivate MAP. Mycobacterium smegmatis was also assessed as a surrogate for MAP. Two structures were constructed to hold three cattle carcasses each. Naturally-infected tissues and ground beef inoculated with laboratory cultured MAP and M. smegmatis were placed in nylon and plastic bags to determine effect of temperature and compost environment on viability over 250 (days) d. After removal, samples were cultured and growth of both organisms assessed after 12 weeks (wks). After 250 d, MAP was still detectable by PCR, while M. smegmatis was not detected after 67 d of composting. Furthermore, MAP remained viable in both implanted nylon and plastic bags over the composting period. As the compost never reached a homogenous thermophillic (55-65°C) state throughout each structure, an in vitro experiment was conducted to examine viability of MAP after exposure to 80°C for 90 d. Naturally-infected lymph tissues were mixed with and without compost. After 90 d, MAP remained viable despite exposure to temperatures typically higher than that achieved in compost. In conclusion, it is unlikely composting can be used as a means of inactivating MAP associated with cattle mortalities.
    Applied and Environmental Microbiology 03/2013; · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Johne's disease (JD) is a chronic, enteric disease in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). Disease progression follows four distinct stages: silent, subclinical, clinical and advanced. Available diagnostic tests have poor sensitivity and cannot detect early stages of the infection; as a result, only animals in the clinical and advanced stages, which represent the tip of the 'iceberg', are identified through testing. The Iceberg Phenomenon is then applied to provide estimates for JD prevalence. For one animal in the advanced stage, it is assumed that there are one to two in the clinical stage, four to eight in the subclinical stage, and ten to fourteen in the silent stage. These ratios, however, are based on little evidence. To evaluate the ratios, we developed a deterministic ordinary differential equation model of JD transmission and disease progression dynamics. When duration periods associated with the natural course of the disease progression are used, the above ratios do not hold. The ratios used to estimate JD prevalence need to be further investigated.
    PLoS ONE 11/2013; 8(10):e76636. · 3.53 Impact Factor

Full-text

View
2 Downloads
Available from