Survival and dormancy of Mycobacterium avium subsp. paratuberculosis in the environment.

Faculty of Veterinary Science, The University of Sydney, Sydney, Australia.
Applied and Environmental Microbiology (Impact Factor: 3.95). 06/2004; 70(5):2989-3004. DOI: 10.1128/AEM.70.5.2989-3004.2004
Source: PubMed

ABSTRACT The survival of Mycobacterium avium subsp. paratuberculosis was studied by culture of fecal material sampled at intervals for up to 117 weeks from soil and grass in pasture plots and boxes. Survival for up to 55 weeks was observed in a dry fully shaded environment, with much shorter survival times in unshaded locations. Moisture and application of lime to soil did not affect survival. UV radiation was an unlikely factor, but infrared wavelengths leading to diurnal temperature flux may be the significant detrimental component that is correlated with lack of shade. The organism survived for up to 24 weeks on grass that germinated through infected fecal material applied to the soil surface in completely shaded boxes and for up to 9 weeks on grass in 70% shade. The observed patterns of recovery in three of four experiments and changes in viable counts were indicative of dormancy, a hitherto unreported property of this taxon. A dps-like genetic element and relA, which are involved in dormancy responses in other mycobacteria, are present in the M. avium subsp. paratuberculosis genome sequence, providing indirect evidence for the existence of physiological mechanisms enabling dormancy. However, survival of M. avium subsp. paratuberculosis in the environment is finite, consistent with its taxonomic description as an obligate parasite of animals.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Terrestrial sulfidic springs support diverse microbial communities by serving as stable conduits for geochemically diverse and nutrient-rich subsurface waters. Microorganisms that colonize terrestrial springs likely originate from groundwater, but may also be sourced from the surface. As such, the biogeographic distribution of microbial communities inhabiting sulfidic springs should be controlled by a combination of spring geochemistry and surface and subsurface transport mechanisms, and not necessarily geographic proximity to other springs. We examined the bacterial diversity of seven springs to test the hypothesis that occurrence of taxonomically similar microbes, important to the sulfur cycle, at each spring is controlled by geochemistry. Complementary Sanger sequencing and 454 pyrosequencing of 16S rRNA genes retrieved five proteobacterial classes, and Bacteroidetes, Chlorobi, Chloroflexi, and Firmicutes phyla from all springs, which suggested the potential for a core sulfidic spring microbiome. Among the putative sulfide-oxidizing groups (Epsilonproteobacteria and Gammaproteobacteria), up to 83% of the sequences from geochemically similar springs clustered together. Abundant populations of Hydrogenimonas-like or Sulfurovum-like spp. (Epsilonproteobacteria) occurred with abundant Thiothrix and Thiofaba spp. (Gammaproteobacteria), but Arcobacter-like and Sulfurimonas spp. (Epsilonproteobacteria) occurred with less abundant gammaproteobacterial populations. These distribution patterns confirmed that geochemistry rather than biogeography regulates bacterial dominance at each spring. Potential biogeographic controls were related to paleogeologic sedimentation patterns that could control long-term microbial transport mechanisms that link surface and subsurface environments. Knowing the composition of a core sulfidic spring microbial community could provide a way to monitor diversity changes if a system is threatened by anthropogenic processes or climate change.
    Frontiers in Microbiology 09/2014; 5:473. · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Slurry can harbor multiple microbial pathogens among which Mycobacterium avium subsp. paratuberculosis (MAP).•We evaluated the persistence of MAP in soil and infection of soil Acanthamoeba•Infection of amoeba by MAP provides a protected niche for the persistence•As others have suggested, MAP-infected amoeba may act like a “Trojan horse”
    Veterinary Microbiology 10/2014; · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacteriophages D29 and TM4 are able to infect a wide range of mycobacteria, including pathogenic and non-pathogenic species. Successful phage infection of both fast- and slow-growing mycobacteria can be rapidly detected using the phage amplification assay. Using this method, the effect of oxygen limitation during culture of mycobacteria on the success of phage infection was studied. Both D29 and TM4 were able to infect cultures of M. smegmatis and Mycobacterium avium subspecies paratuberculosis (MAP) grown in liquid with aeration. However when cultures were grown under oxygen limiting conditions, only TM4 could productively infect the cells. Cell attachment assays showed that D29 could bind to the cells surface but did not complete the lytic cycle. The ability of D29 to productively infect the cells was rapidly recovered (within 1 day) when the cultures were returned to an aerobic environment and this recovery required de novo RNA synthesis. These results indicated that under oxygen limiting conditions the cells are entering a growth state which inhibits phage D29 replication, and this change in host cell biology which can be detected by using both phage D29 and TM4 in the phage amplification assay.
    PLoS ONE 09/2014; 9(9). · 3.53 Impact Factor

Full-text (2 Sources)

Available from
Dec 2, 2014