Bioequivalence, safety, and tolerability of imatinib tablets compared with capsules

Novartis Oncology, Basel, Switzerland.
Cancer Chemotherapy and Pharmacology (Impact Factor: 2.57). 06/2004; 53(5):433-8. DOI: 10.1007/s00280-003-0756-z
Source: PubMed

ABSTRACT Imatinib (Glivec) has been established as a highly effective therapy for chronic myeloid leukemia and gastrointestinal tumors. The recommended daily dosage of 400-600 mg requires simultaneous intake of up to six of the current 100-mg capsules. Due to the need to swallow multiple capsules per dose, there is a potential negative impact on treatment adherence; therefore, a new imatinib 400-mg film-coated tablet has been developed. To improve dosing flexibility, particularly with regard to the pediatric population and the management of adverse events, a scored 100-mg film-coated tablet has also been introduced.
A group of 33 healthy subjects were randomly assigned to one of six treatment sequences, in which they received imatinib as 4 x 100-mg capsules (reference), 4 x 100-mg scored tablets (test), and 1 x 400-mg tablet (test). Blood sampling was performed for up to 96 h after dosing, followed by a 10-day washout period prior to the next sequence. After the third dosing, subjects were monitored to assess delayed drug-related adverse events. Pharmacokinetic parameters were assessed using concentration-time curves for plasma imatinib and its metabolite CGP74588.
Median Tmax was 2.5 h for capsules and tablets. Mean AUC((0-inf)) values were 27,094, 26,081 and 25,464 ng.h/ml for 4 x 100-mg capsules, 4 x 100-mg tablets, and 1 x 400-mg tablets, respectively. Cmax values were 1748, 1638 and 1606 ng/ml, and t(1/2) values were 15.8, 15.9 and 15.7 h. The test/reference ratios for AUC((0-inf)), AUC((0-96) (h)), and C(max) were 0.98, 0.98 and 0.95 for 4 x 100-mg tablets versus 4 x 100-mg capsules, and 0.95, 0.95 and 0.92 for 1 x 400-mg tablet versus 4 x 100-mg capsules. The 95% confidence intervals were fully contained within the interval (0.80, 1.25). Eight mild and one moderate adverse event considered to be drug related were reported. These events showed no clustering by type of dosage form and were of little to no clinical significance.
Film-coated 100-mg (scored) and 400-mg tablet dose forms of imatinib are bioequivalent to the commercial 100-mg hard-gelatin capsule, and are as safe and well tolerated.

    • "On the other hand, bioequivalence cannot be compromised when two solid dosage forms such as hard gelatin capsules and tablets where interchanged. Few publications are found in literature demonstrating potential interchangeability of two different solid dosage forms based on pharmacokinetic data[56]. The aim of the present study was to determine if the practice of interchangeability between two amoxicillin capsules (Amoxil®, 500 mg/capsule) and one amoxicillin tablet (Amoxicare®, 1000 mg/tablet) in order to achieve better patient compliance can be conducted without compromising their extent of absorption "
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the study was to evaluate if two capsules (Amoxil(®) capsules, 500 mg/capsule) and one tablet (Amoxicare(®) tablets, 1000 mg/tablet) of amoxicillin have similar bioequivalence parameters. For this purpose a randomized, two-way, crossover, bioequivalence study was performed in 24 healthy, male volunteers, divided into two groups of 12 subjects each. One group was treated with the reference standard (Amoxil(®)) and the other one with the generic tablet Amoxicare(®), with a crossover after a wash-out period of 7 days. Blood samples were collected at fixed time intervals and amoxicillin was determined by a validated HPLC method. The pharmacokinetic parameters AUC(0-8), AUC(0-∞), C(max), T(max), K(e) and T(1/2) were determined for both formulations and statistically compared to evaluate the bioequivalence between the two brands of amoxicillin, using the statistical model recommended by the FDA. C(max) and AUC(0-∞) were statistically analyzed using analysis of variance (ANOVA); no statistically significant difference was observed between the two formulations. The 90% confidence intervals between the mean values of C(max) and AUC(0-∞) fall within the FDA specified bioequivalent limits (80-125%) suggesting that the two products are bioequivalent and the two formulations are interchangeable. Based on these findings it was concluded that the practice of interchangeability between the above formulations to achieve better patient compliance could be followed without compromising the extent of amoxicillin absorption.
    Indian Journal of Pharmaceutical Sciences 07/2010; 72(4):414-20. DOI:10.4103/0250-474X.73904 · 0.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Imatinib is a potent and selective inhibitor of the protein tyrosine kinase Bcr-Abl, platelet-derived growth factor receptors (PDGFRalpha and PDGFRbeta) and KIT. Imatinib is approved for the treatment of chronic myeloid leukaemia (CML) and gastrointestinal stromal tumour (GIST), which have dysregulated activity of an imatinib-sensitive kinase as the underlying pathogenetic feature. Pharmacokinetic studies of imatinib in healthy volunteers and patients with CML, GIST and other cancers show that orally administered imatinib is well absorbed, and has an absolute bioavailability of 98% irrespective of oral dosage form (solution, capsule, tablet) or dosage strength (100 mg, 400 mg). Food has no relevant impact on the rate or extent of bioavailability. The terminal elimination half-life is approximately 18 hours. Imatinib plasma concentrations predictably increase by 2- to 3-fold when reaching steady state with 400mg once-daily administration, to 2.6 +/- 0.8 microg/mL at peak and 1.2 +/- 0.8 microg/mL at trough, exceeding the 0.5 microg/mL (1 micromol/L) concentrations needed for tyrosine kinase inhibition in vitro and leading to normalisation of haematological parameters in the large majority of patients with CML irrespective of baseline white blood cell count. Imatinib is approximately 95% bound to human plasma proteins, mainly albumin and alpha1-acid glycoprotein. The drug is eliminated predominantly via the bile in the form of metabolites, one of which (CGP 74588) shows comparable pharmacological activity to the parent drug. The faecal to urinary excretion ratio is approximately 5:1. Imatinib is metabolised mainly by the cytochrome P450 (CYP) 3A4 or CYP3A5 and can competitively inhibit the metabolism of drugs that are CYP3A4 or CYP3A5 substrates. Interactions may occur between imatinib and inhibitors or inducers of these enzymes, leading to changes in the plasma concentration of imatinib as well as coadministered drugs. Hepatic and renal dysfunction, and the presence of liver metastases, may result in more variable and increased exposure to the drug, although typically not necessitating dosage adjustment. Age (range 18-70 years), race, sex and bodyweight do not appreciably impact the pharmacokinetics of imatinib.
    Clinical Pharmacokinetics 02/2005; 44(9):879-94. DOI:10.2165/00003088-200544090-00001 · 5.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Imatinib mesylate (GLEEVEC, GLIVEC, formerly STI571) has demonstrated unprecedented efficacy as first-line therapy for treatment for all phases of chronic myelogenous leukemia and metastatic and unresectable malignant gastrointestinal stromal tumors. Disposition and biotransformation of imatinib were studied in four male healthy volunteers after a single oral dose of 239 mg of (14)C-labeled imatinib mesylate. Biological fluids were analyzed for total radioactivity, imatinib, and its main metabolite CGP74588. Metabolite patterns were determined by radio-high-performance liquid chromatography with off-line microplate solid scintillation counting and characterized by liquid chromatography-mass spectrometry. Imatinib treatment was well tolerated without serious adverse events. Absorption was rapid (t(max) 1-2 h) and complete with imatinib as the major radioactive compound in plasma. Maximum plasma concentrations were 0.921 +/- 0.095 mug/ml (mean +/- S.D., n = 4) for imatinib and 0.115 +/- 0.026 mug/ml for the pharmacologically active N-desmethyl metabolite (CGP74588). Mean plasma terminal elimination half-lives were 13.5 +/- 0.9 h for imatinib, 20.6 +/- 1.7 h for CGP74588, and 57.3 +/- 12.5 h for (14)C radioactivity. Imatinib was predominantly cleared through oxidative metabolism. Approximately 65 and 9% of total systemic exposure [AUC(0-24 h) (area under the concentration time curve) of radioactivity] corresponded to imatinib and CGP74588, respectively. The remaining proportion corresponded mainly to oxidized derivatives of imatinib and CGP74588. Imatinib and its metabolites were excreted predominantly via the biliary-fecal route. Excretion of radioactivity was slow with a mean radiocarbon recovery of 80% within 7 days (67% in feces, 13% in urine). Approximately 28 and 13% of the dose in the excreta corresponded to imatinib and CGP74588, respectively.
    Drug Metabolism and Disposition 11/2005; 33(10):1503-12. DOI:10.1124/dmd.105.004283 · 3.33 Impact Factor
Show more