Properties of Radicals Formed by the Irradiation of Wool Fibers

Shanghai Institute of Applied Physics, Chinese Academy of Sciences, China.
Journal of Radiation Research (Impact Factor: 1.8). 04/2004; 45(1):77-81. DOI: 10.1269/jrr.45.77
Source: PubMed


Wool fibers of different sample conditions were irradiated in different atmospheres by (60)Co gamma-rays and were studied by electron spin resonance method (ESR). It was found that a large percentage of the alpha-carbon radicals of polymer main chain were more long-lived radicals. The ESR measurements of irradiated cortex samples of the wool fibers proved that most radicals from the cortex were long-lived ones. Low water content (as low as 27.5%) in the reaction system did not greatly affect the radical formation, but higher water contents would reduce the radical concentrations dramatically and accelerate their decaying process. The results will be of help in property modification of wool products by radiation graft copolymerization.

2 Reads
  • Source
    Chapter: In Textiles

    Polymer Grafting and Crosslinking, 05/2008: pages 177 - 201; , ISBN: 9780470414811
  • [Show abstract] [Hide abstract]
    ABSTRACT: The wool fibre has a complex morphology, consisting of an outer layer of cuticle scales surrounding an inner cortex. These two components are hard to separate effectively except by using harsh chemical treatments, making it difficult to determine the susceptibility of the different components of the fibre to photoyellowing. An approach to this problem based on mechanical fibre modification is described. To expose the inner cortex of wool to different degrees, clean wool fibres were converted into 'powders' of various fineness via mechanical chopping, air-jet milling, ball milling or their combination. Four types of powdered wool (samples A, B, C and D) were produced with reducing particle size distributions and an increasing level of surface damage as observed using SEM. Sample A contained essentially intact short fibre snippets and sample D contained a large amount of exposed cortical materials. Samples B and C contained a mixture of short fibre snippets and cortical materials. Solid wool discs were then compressed from the corresponding powder samples in a polished stainless steel die to enable colour measurement and UV irradiation studies. ATR-FTIR studies on powder discs demonstrated a small shift in the amide I band from 1644cm(-1) for disc A to 1654cm(-1) for disc D due to the different structures of the wool cuticle and cortex, in agreement with previous studies. Similarly an increase in the intensity ratio of the amide I to amide II band (1540cm(-1)) was observed for disc D, which contains a higher fraction of cortical material at the surface of the disc. Discs prepared from sample D appeared the lightest in colour before exposure and had the slowest photoyellowing rate, whereas discs made from powders A-C with a higher level of cuticle coverage were more yellow before exposure and experienced a faster rate of photoyellowing. This suggests that the yellow chromophores of wool may be more prevalent in cuticle scales, and that wool photoyellowing occurs to a greater extent in the cuticle than in the cortex. Photo-induced chemiluminescence measurements showed that sample D had a higher chemiluminescence intensity after exposure to UVA radiation and a faster decay rate than samples A and B. Thus one of the roles of the wool cuticle may be to protect the cortex by quenching of free radical oxidation during exposure to the UV wavelengths present in sunlight.
    Journal of Photochemistry and Photobiology B Biology 07/2008; 92(3):135-43. DOI:10.1016/j.jphotobiol.2008.05.011 · 2.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dosimetry based on the detection by electron paramagnetic resonance (EPR) spectroscopy of ionizing radiation-induced radicals is an established method for the retrospective dosimetry of past exposures and the dosimetry of potentially exposed persons in radiological emergencies. The dose is estimated by measuring the physical damage induced in materials contained in objects placed on or next to the potentially exposed person. The aim of this paper is to survey the current literature about methodologies and materials that have been proposed for EPR dosimetry, in order to identify those that could be suitable for population triage according to criteria such as ubiquity, non invasiveness and easy sample collection, presence of a post-irradiation EPR signal, negligible background signal, linearity of dose-response relationship, minimum detection limit and post-irradiation signal stability. The paper will survey the features of sugar, plastics, glass, clothing tissues, and solid biological tissues (nails, hair and calcified tissues).
    Annali dell'Istituto superiore di sanita 01/2009; 45(3):287-96. · 1.11 Impact Factor
Show more

Similar Publications