Targeting internal ribosome entry site (IRES)-mediated translation to block hepatitis C and other RNA viruses.

Department of Microbiology, Immunology and Molecular Genetics, UCLA School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA.
FEMS Microbiology Letters (Impact Factor: 2.05). 06/2004; 234(2):189-99. DOI: 10.1016/j.femsle.2004.03.045
Source: PubMed

ABSTRACT A number of RNA-containing viruses such as hepatitis C (HCV) and poliovirus (PV) that infect human beings and cause serious diseases use a common mechanism for synthesis of viral proteins, termed internal ribosome entry site (IRES)-mediated translation. This mode of translation initiation involves entry of 40S ribosome internally to the 5' untranslated region (UTR) of viral RNA. Cap-dependent translation of cellular mRNAs, on the other hand, requires recognition of mRNA 5' cap by the translation machinery. In this review, we discuss two inhibitors that specifically inhibit viral IRES-mediated translation without interfering with cellular cap-dependent translation. We present evidence, which suggest that one of these inhibitors, a small RNA (called IRNA) originally isolated from the yeast Saccharomyces cerevisiae, inhibits viral IRES-mediated translation by sequestering both noncanonical transacting factors and canonical initiation factors required for IRES-mediated translation. The other inhibitor, a small peptide from the lupus autoantigen La (called LAP), appears to block binding of cellular transacting factors to viral IRES elements. These results suggest that it might be possible to target viral IRES-mediated translation for future development of therapeutic agents effective against a number of RNA viruses including HCV that exclusively use cap-independent translation for synthesis of viral proteins.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, we have demonstrated that the protease domain of NS3 alone can bind specifically to hepatitis C virus (HCV) internal ribosome entry site (IRES) near the initiator AUG, dislodges human La protein and inhibits translation in favor of viral RNA replication. Here, by using a computational approach, the contact points of the protease on the HCV IRES were putatively mapped. A 30-mer NS3 peptide was designed from the predicted RNA-binding region that retained RNA-binding ability and also inhibited IRES-mediated translation. This peptide was truncated to 15 mer and this also demonstrated ability to inhibit HCV RNA-directed translation as well as replication. More importantly, its activity was tested in an in vivo mouse model by encapsulating the peptide in Sendai virus virosomes followed by intravenous delivery. The study demonstrates for the first time that the HCV NS3-IRES RNA interaction can be selectively inhibited using a small peptide and reports a strategy to deliver the peptide into the liver.
    Molecular Therapy 08/2012; · 7.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) causes a clinically important disease affecting 3% of the world population. HCV is a single-stranded, positive-sense RNA virus belonging to the genus Hepacivirus within the Flaviviridae family. The virus establishes a chronic infection in the face of an active host oxidative defence, thus adaptation to oxidative stress is key to virus survival. Being a small RNA virus with a limited genomic capacity, we speculate that HCV deploys a different strategy to evade host oxidative defence. Instead of counteracting oxidative stress, it utilizes oxidative stress to facilitate its own survival. Translation is the first step in the replication of a plus strand RNA virus so it would make sense if the virus can exploit the host oxidative defence in facilitating this very first step. This is particularly true when HCV utilizes an internal ribosome entry site element in translation, which is distinctive from that of cap-dependent translation of the vast majority of cellular genes, thus allowing selective translation of genes under conditions when global protein synthesis is compromised. Indeed, we were the first to show that HCV translation was stimulated by an important pro-oxidant-hydrogen peroxide in hepatocytes, suggesting that HCV is able to adapt to and utilize the host anti-viral response to facilitate its own translation thus allowing the virus to thrive under oxidative stress condition to establish chronicity. Understanding how HCV translation is regulated under oxidative stress condition will advance our knowledge on how HCV establishes chronicity. As chronicity is the initiator step in disease progression this will eventually lead to a better understanding of pathogenicity, which is particularly relevant to the development of anti-virals and improved treatments of HCV patients using anti-oxidants.
    World Journal of Gastroenterology 03/2014; 20(11):2785-2800. · 2.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic initiation factors (eIFs) are required for encoding polyprotein of hepatitis C virus (HCV) which is mediated by an internal ribosome-entry site (IRES). Iron overload, a common finding among HCV patients, may be correlated with HCV pathology, but the underlying molecular mechanisms are poorly understood. In this study, we investigated the possible relationship among iron status, eIFs and HCV IRES-mediated translation in vitro. Using bicistronic reporter gene constructs carrying HCV IRES sequence, we found that the levels of intracellular iron were positively associated with the HCV IRES-dependent translation initiation in Huh-7 cells. RT-PCR method showed that iron treatment specifically increased the levels of eIF3A mRNA and La mRNA, whereas iron chelation reduced them. Western blots also confirmed that iron-dependent changes in eIF3A mRNA and La mRNA affected the expression of their proteins. Moreover, antisense phosphorothioate oligodeoxynucleotides to eIF3A and La successfully suppressed the levels of eIF3A and La protein and significantly reduced iron-dependent HCV translation. Taken together, our results suggest that iron promotes the translation initiation of HCV by stimulating the expression of eIF3A and La proteins. Inhibition of eIF3A and La proteins substantially repressed iron-dependent HCV translation, a beneficial effect that may have significant clinical implications.
    Virus Research 05/2012; 167(2):302-9. · 2.75 Impact Factor


Available from