Article

Embryonic expression of the soma-restricted products of the myelin proteolipid gene in motor neurons and muscle

Developmental Biology Group, Neuropsychiatric Research Institute, Room 47-444, UCLA School of Medicine, 760 Westwood Plaza, Los Angeles, California 90024, USA.
Neurochemical Research (Impact Factor: 2.55). 06/2004; 29(5):997-1002. DOI: 10.1023/B:NERE.0000021244.38279.c4
Source: PubMed

ABSTRACT In addition to classic proteolipid protein (PLP) and DM20, the mouse myelin proteolipid gene produces the sr-PLP and sr-DM20 proteins. The sr-isoforms are localized to the cell bodies of both oligodendrocytes and neurons. However, they are expressed to a greater extent in neurons than they are in glia. In this study, we examined expression of the sr-proteolipids in the mouse embryo using immunohistochemistry with an sr-PLP/DM20 specific antibody. Widespread expression of the sr-proteins was found in many nonmyelinating cell types. In particular, strong immunoreactivity was detected in motor neurons of both the autonomic and somatic nervous systems as well as in striated muscle. This pattern of expression persisted throughout the embryonic period studied. Thus, the sr-proteolipids are expressed prior to the onset of myelination and in a much broader array of cell types than their classic counterparts. These results support the conclusion that the sr-isoforms of the PLP gene have a biological role independent of myelination.

0 Bookmarks
 · 
67 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: How the human brain develops and adapts with its trillions of functionally integrated synapses remains one of the greatest mysteries of life. With tremendous advances in neuroscience, genetics, and molecular biology, we are beginning to appreciate the scope of this complexity and define some of the parameters of the systems that make it possible. These same tools are also leading to advances in our understanding of the pathophysiology of neurocognitive and neuropsychiatric disorders. Like the substrate for these problems, the etiology is usually complex-involving an array of genetic and environmental influences. To resolve these influences and derive better interventions, we need to reveal every aspect of this complexity and model their interactions and define the systems and their regulatory structure. This is particularly important at the tissue-specific molecular interface between the underlying genetic and environmental influence defined by the transcriptome. Recent advances in transcriptome analysis facilitated by RNA sequencing (RNA-Seq) can provide unprecedented insight into the functional genomics of neurological disorders. In this review, we outline the advantages of this approach and highlight some early application of this technology in the investigation of the neuropathology of schizophrenia. Recent progress of RNA-Seq studies in schizophrenia has shown that there is extraordinary transcriptome dynamics with significant levels of alternative splicing. These studies only scratch the surface of this complexity and therefore future studies with greater depth and samples size will be vital to fully explore transcriptional diversity and its underlying influences in schizophrenia and provide the basis for new biomarkers and improved treatments.
    International Review of Neurobiology 01/2014; 116C:127-152. DOI:10.1016/B978-0-12-801105-8.00006-0 · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has become clear that the products of several of the earliest identified myelin protein genes perform functions that extend beyond the myelin sheath. Interestingly, these myelin proteins, which comprise proteolipid protein, 29,39- cyclic nucleotide 39-phosphodiesterase and the classic and golli MBPs (myelin basic proteins), play important roles during different stages of oligodendroglial development. These non-myelin-related functions are varied and include roles in the regulation of process outgrowth, migration, RNA transport, oligodendrocyte survival and ion channel modulation. However, despite the wide variety of cellular functions performed by the different myelin genes, the route by which they achieve these many functions seems to converge upon a common mechanism involving Ca 2+ regulation, cytoskeletal rearrangements and signal trans- duction. In the present review, the newly emerging functions of these myelin proteins will be described, and these will then be discussed in the context of their contribution to oligodendroglial development.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While hybridization based analysis of the cortical transcriptome has provided important insight into the neuropathology of schizophrenia, it represents a restricted view of disease-associated gene activity based on predetermined probes. By contrast, sequencing technology can provide un-biased analysis of transcription at nucleotide resolution. Here we use this approach to investigate schizophrenia-associated cortical gene expression. The data was generated from 76 bp reads of RNA-Seq, aligned to the reference genome and assembled into transcripts for quantification of exons, splice variants and alternative promoters in postmortem superior temporal gyrus (STG/BA22) from 9 male subjects with schizophrenia and 9 matched non-psychiatric controls. Differentially expressed genes were then subjected to further sequence and functional group analysis. The output, amounting to more than 38 Gb of sequence, revealed significant alteration of gene expression including many previously shown to be associated with schizophrenia. Gene ontology enrichment analysis followed by functional map construction identified three functional clusters highly relevant to schizophrenia including neurotransmission related functions, synaptic vesicle trafficking, and neural development. Significantly, more than 2000 genes displayed schizophrenia-associated alternative promoter usage and more than 1000 genes showed differential splicing (FDR<0.05). Both types of transcriptional isoforms were exemplified by reads aligned to the neurodevelopmentally significant doublecortin-like kinase 1 (DCLK1) gene. This study provided the first deep and un-biased analysis of schizophrenia-associated transcriptional diversity within the STG, and revealed variants with important implications for the complex pathophysiology of schizophrenia.
    PLoS ONE 04/2012; 7(4):e36351. DOI:10.1371/journal.pone.0036351 · 3.53 Impact Factor

Full-text (2 Sources)

Download
11 Downloads
Available from
Jul 25, 2014