Echolocation signals of dusky dolphins (Lagenorhynchus obscurus) in Kaikoura, New Zealand.

Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1109, Kailua, Hawaii 96734, USA.
The Journal of the Acoustical Society of America (Impact Factor: 1.56). 06/2004; 115(5 Pt 1):2307-13. DOI: 10.1121/1.1690082
Source: PubMed

ABSTRACT An array of four hydrophones arranged in a symmetrical star configuration was used to measure the echolocation signals of the dusky dolphin (Lagenorhynchus obscurus) near the Kaikoura Peninsula, New Zealand. Most of the echolocation signals had bi-modal frequency spectra with a low-frequency peak between 40 and 50 kHz and a high-frequency peak between 80 and 110 kHz. The low-frequency peak was dominant when the source level was low and the high frequency peak dominated when the source level was high. The center frequencies in the dusky broadband echolocation signals are among the highest of dolphins measured in the field. Peak-to-peak source levels as high as 210 dB re 1 microPa were measured, although the average was much lower in value. The levels of the echolocation signals are about 9-12 dB lower than for the larger white-beaked dolphin (Lagenorhynchus albirostris) which belongs to the same genus but is over twice as heavy as the dusky dolphins. The source level varied in amplitude approximately as a function of the one-way transmission loss for signals traveling from the animals to the array. The wave form and spectrum of the echolocation signals were similar to those of other dolphins measured in the field.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Odontocete mandibles serve multiple functions, including feeding and hearing. We consider that these two major functions have their primary influence in different parts of the mandibles: the anterior feeding component and the posterior sound reception component, though these divisions are not mutually exclusive. One hypothesis is that sound enters the hearing apparatus via the pan bone of the posterior mandibles (Norris, Evolution and Environment,1968, pp 297-324). Another viewpoint, based on finite element models, suggests that sound enters primarily through the gular region and the opening created by the absent medial lamina of the posterior mandibles. This unambiguous link between form and function has catalyzed this study, which uses Geometric Morphometrics to quantify mandibular shape across all major lineages of Odontoceti. The majority of shape variation was found in the anterior (feeding) region: Jaw Flare (45.0%) and Symphysis Elongation (35.5%). Shape differences in the mandibular foramen, within the posterior (sound reception) region, also accounted for a small portion of the total variation (10.9%). The mandibles are an integral component of the sound reception apparatus in toothed whales and the geometry of the mandibular foramen likely plays a role in hearing. Furthermore, model goodness-of-fit tests indicate that mandibular foramina shapes, which appear conserved, evolved under a selective regime, possibly driven by sound reception requirements across Odontoceti.
    Journal of Morphology 09/2012; 273(9):1021-30. DOI:10.1002/jmor.20040 · 1.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous measurements of toothed whale echolocation transmission beam patterns have utilized few hydrophones and have therefore been limited to fine angular resolution only near the principal axis or poor resolution over larger azimuthal ranges. In this study, a circular, horizontal planar array of 35 hydrophones was used to measure a dolphin's transmission beam pattern with 5° to 10° resolution at azimuths from -150° to +150°. Beam patterns and directivity indices were calculated from both the peak-peak sound pressure and the energy flux density. The emitted pulse became smaller in amplitude and progressively distorted as it was recorded farther off the principal axis. Beyond ±30° to 40°, the off-axis signal consisted of two distinct pulses whose difference in time of arrival increased with the absolute value of the azimuthal angle. A simple model suggests that the second pulse is best explained as a reflection from internal structures in the dolphin's head, and does not implicate the use of a second sound source. Click energy was also more directional at the higher source levels utilized at longer ranges, where the center frequency was elevated compared to that of the lower amplitude clicks used at shorter range.
    The Journal of the Acoustical Society of America 10/2014; 136(4):2025. DOI:10.1121/1.4895682 · 1.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Narwhals (Monodon monoceros) are gregarious, toothed whales restricted to the Arctic, where habitats are changing and shipping traffic is increasing. Challenges associated with the remoteness of narwhal populations and the general difficulty of studying deep diving mammals have resulted in a lack of knowledge of narwhal social behaviour, which can only be rectified with intensive, direct and systematic observations. I studied the grouping patterns and vocal behaviour of narwhals using non-invasive methods and developed new statistical tools to analyse the data. The field work was conducted at Bruce Head, a peninsula at the mouth of Koluktoo Bay, Nunavut, during the summers of 2006-2008. Shore-based observations were used to delineate narwhal groups by sex and age class. Narwhals travelled in clusters of 1–25 individuals of mixed sex and age class. Narwhals entered the bay in larger groups than they exited. The coloration of narwhal's backs on photographs was used to estimate their age and investigate their association with individuals of similar age. To analyse these data, I developed statistical methods that examine the distribution of observations in time and their associated characteristics. Using these methods, I found that narwhals form groups with individuals of similar age. The variability and the context of usage of narwhal calls were examined from underwater recordings. Some physical characteristics of narwhal whistles seemed behaviour-specific. Both whistles and pulsed calls might serve in individual- or group-recognition. Finally, given that there is a need for sustained, local monitoring of narwhals, I explored the potential of passive acoustic methods for narwhal monitoring. An automated detector was able to correctly identify narwhal calls in a 25-day continuous recording. There was a correlation between the number of calls manually detected in non-continuous recordings and the number of narwhals observed during the recordings. Non-invasive methods can provide valuable insight into the social organization, communication and movement patterns of large numbers of non-disturbed cetaceans. Le narval (Monodon monoceros) est un cétacé grégaire arctique dont l'habitat est en train de se modifier rapidement. Les difficultés reliées à l'accès en Arctique et à l'étude des cétacés en haute mer expliquent le manque d'information sur le comportement social des narvals. Dans le cadre de mes études doctorales j'ai étudié les groupes sociaux des narvals ainsi que leur communication vocale en utilisant des méthodes de récolte de données non invasives. De plus, j'ai développé des méthodes statistiques pour l'analyse de ces données. Le travail de terrain s'est déroulé au cours des étés 2006 à 2008 dans la baie Koluktoo, au Nunavut. À partir d'observations faites de la côte, la composition et la taille des groupes de narvals ont été compilées. Les narvals se déplaçaient en groupes de 1 à 25 individus d'âge et de sexe variés et entraient dans la baie en groupes plus nombreux que lorsqu'ils en sortaient. La coloration sur le dos des narvals pris en photo a servi à estimer leur âge et à évaluer la formation de groupe en fonction de ces âges. Pour analyser ces données, j'ai développé des méthodes statistiques qui évaluent la distribution d'observations réparties dans le temps ainsi que des caractéristiques associées à chacune des observations. Cette analyse m'a permis de conclure que les narvals forment des groupes avec des individus d'âges similaires. La variabilité et le contexte de l'utilisation des vocalisations émises par les narvals ont par la suite été étudiés à partir d'enregistrements acoustiques sous-marins. Ainsi, certaines caractéristiques acoustiques des vocalisations semblent associées spécifiquement à certains comportements. De plus, certaines de ces vocalisations pourraient être uniques à chaque groupe. Finalement, j'ai exploré la faisabilité d'un programme de surveillance acoustique à long terme pour les narvals. Les vocalisations des narvals ont été correctement détectées par un détecteur automatique appliqué à un enregistrement continu sur 25 jours. Le nombre de narvals observés visuellement et le nombre de vocalisations entendues durant ces enregistrements non continus étaient corrélés. Ces méthodes non invasives permettent d'étudier l'organisation sociale, la communication et les mouvements cétacés en grand nombre sans les perturber.