Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749-54

University of Milan, Milano, Lombardy, Italy
Circulation (Impact Factor: 14.43). 07/2004; 109(22):2749-54. DOI: 10.1161/01.CIR.0000130926.51766.CC
Source: PubMed


In patients with aggressive malignancies who are undergoing high-dose chemotherapy, even minimal elevation of troponin I (TnI) is associated with late left ventricular dysfunction. The time course of the subclinical myocardial damage and its impact on the clinical outcome have never been investigated previously.
In 703 cancer patients, we measured TnI soon after chemotherapy (early TnI) and 1 month later (late TnI). Troponin was considered positive for values > or =0.08 ng/mL. Clinical and left ventricular ejection fraction evaluation (echocardiography) were performed before chemotherapy, 1, 3, 6, and 12 months after the end of the treatment, and again every 6 months afterward. Three different TnI patterns were identified, and patients were grouped accordingly. In 495 patients, both early and late TnI values were <0.08 ng/mL (TnI-/- group); in 145, there was only an early increase (TnI+/- group); and in 63 patients, both values increased (TnI+/+ group). In the TnI-/- group, no significant reduction in ejection fraction was observed during the follow-up, and there was a very low incidence of cardiac events (1%). In contrast, a greater incidence of cardiac events occurred in TnI-positive patients, particularly in the TnI(+/+) group (84% versus 37% in the TnI+/- group; P<0.001).
TnI release pattern after high-dose chemotherapy identifies patients at different risks of cardiac events in the 3 years thereafter. This stratification allows us to differentiate the monitoring program and to plan, in selected patients, preventive strategies aimed at improving clinical outcome.

Download full-text


Available from: Fedro A Peccatori,
  • Source
    • "Despite this knowledge, there is not a current stratification tool to accurately assess increased risk of CVD morbidity and mortality in breast cancer survivors. For example, sub-clinical cardiac dysfunction may go unnoticed until more overt symptoms occur and still remain undetected by a resting echocardiogram (ECHO) (Cardinale et al. 2004; Civelli et al. 2006). However, exercise tests may be more sensitive than resting tests in identifying cardiac dysfunction in long-term survivors (Gottdiener et al. 1981; Klewer et al. 1992; Weesner et al. 1991). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Maximal oxygen uptake (VO2max) has been used to assess risk for all-cause mortality and cardiovascular disease (CVD), and low VO2max has recently been associated with increased mortality from breast cancer. The purpose of this study was to determine the proportion of breast cancer survivors with 2 or more risk factors for CVD exhibiting a low VO2max and to determine whether sub-maximal endpoints which could be applied more readily to intervention research would correlate with the maximal treadmill test. We performed a single VO2max test on a treadmill with 30 breast cancer survivors age 30-60 (mean age 50.5 ± 5.6 years) who had 2 or more cardiac risk factors for CVD not related to treatment and who had received systemic therapy and or left chest radiation. Submaximal VO2 endpoints were assessed during the VO2max treadmill test and on an Arc trainer. Resting left ventricular ejection fraction (LVEF) was also assessed by echocardiogram (ECHO) or multi-gated acquisition scan (MUGA). A majority (23/30) of women had a VO2max below the 20th percentile based on their predicted normal values. The group mean resting LVEF was 60.5 ± 5.0%. Submaximal VO2 measures were strongly correlated with the maximal test including; 1) 85% age predicted maximum heart rate VO2 on treadmill, (r = .89; p < 0.001), 2) treadmill VO2 at anaerobic threshold (AT), (r = .83; p < 0.001), and 3) Arc VO2 at AT, (r = .80; p < 0.001). Breast cancer survivors with 2 or more CVD risk factors but normal LVEF had a low cardiorespiratory fitness level compared to normative values in the healthy population placing them at increased risk for breast cancer and cardiovascular mortality. Submaximal VO2 exercise testing endpoints showed a strong correlation with the VO2max test in breast cancer survivors and is a good candidate for testing interventions to improve cardiorespiratory fitness.
    SpringerPlus 12/2013; 2(1):68. DOI:10.1186/2193-1801-2-68
  • Source
    • "The same authors set out to examine the potential impact of the rise in TnI beyond the early rise in troponins (Cardinale et al., 2004). A total of 703 patients were enrolled. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In the context of modern cancer chemotherapeutics, cancer survivors are living longer and being exposed to potential comorbidities related to non-cancer side effects of such treatments. With close monitoring of cancer patients receiving potentially cardiotoxic medical therapies, oncologists, and cardiologists alike are identifying patients in both clinical and subclinical phases of cardiovascular disease related to such chemotherapies. Specifically, cardiotoxicity at the level of the myocardium and potential for the development of heart failure are becoming a growing concern with increasing survival of cancer patients. Traditional chemotherapeutic agents used commonly in the treatment of breast cancer and hematologic malignancies, such as anthracyclines and HER-2 antagonists, are well known to be associated with cardiovascular sequelae. Patients often present without symptoms and an abnormal cardiac imaging study performed as part of routine evaluation of patients receiving cardiotoxic therapies. Additionally, patients can present with signs and symptoms of cardiovascular disease months to years after receiving the chemotherapies. As the understanding of the physiology underlying the various cancers has grown, therapies have been developed that target specific molecules that represent key aspects of physiologic pathways responsible for cancer growth. Inhibition of these pathways, such as those involving tyrosine kinases, has lead to the potential for cardiotoxicity as well. In view of the potential cardiotoxicity of specific chemotherapies, there is a growing interest in identifying patients who are at risk of cardiotoxicity prior to becoming symptomatic or developing cardiotoxicity that may limit the use of potentially life-saving chemotherapy agents. Serological markers and novel cardiac imaging techniques have become the source of many investigations with the goal of screening patients for pre-clinical cardiotoxicity. Additionally, studies have been performed.
    Frontiers in Pharmacology 03/2013; 4:19. DOI:10.3389/fphar.2013.00019 · 3.80 Impact Factor
  • Source
    • "Several studies address a wide range of the incidence of cardiotoxicity, which is related to differences in the definitions, chemotherapy regimens, and patient populations. The occurrence of clinical heart failure (HF) seems to be between 1% and 5%, and asymptomatic decrease in the left ventricular function is in the range of 5% to 20%.1)2) "
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate to determine whether N-acetylcysteine (NAC) can prevent anthracycline-induced cardiotoxicity. A total of 103 patients were enrolled in this prospective randomized open label controlled trial. They are patients first diagnosed with breast cancer or lymphoma, who require chemotherapy, including anthracycline like adriamycine or epirubicine. Patients were randomized to the NAC group {n=50; 1200 mg orally every 8 hours starting before and ending after the intravenous infusion of anthracycline in all chemotherapy cycles (3-6)} or the control group (n=53). Primary outcome was the decrease in left ventricular ejection fraction (LVEF) absolutely ≥10% from the baseline and concomitantly <50% at 6-month. Composite of all-cause death, heart failure and readmission were compared. The primary outcome was not significantly different in the NAC and control groups {3/47 (6.4%) vs. 1/52 (1.9%), p=0.343}. The mean LVEF significantly decreased in both the NAC (from 64.5 to 60.8%, p=0.001) and control groups (from 64.1 to 61.3%, p<0.001) after the completion of whole chemotherapy. The mean LVEF change did not differ between the two groups (-3.64% in NAC vs. -2.78% in control group, p=0.502). Left ventricular (LV) end systolic dimension increased with higher trend in NAC by 3.08±4.56 mm as compared with 1.47±1.83 mm in the control group (p=0.064). LV end diastolic dimension did not change in each group and change does not differ in both. Peak E, A and E/A ratio change and cardiac enzymes were comparable in two groups. Cumulative 12-month event rate was 6% and 3.8% in the NAC group and the control group, respectively, with no difference (p=0.672). We cannot prove that NAC prevents anthracycline-induced cardiomyopathy.
    Korean Circulation Journal 03/2013; 43(3):174-81. DOI:10.4070/kcj.2013.43.3.174 · 0.75 Impact Factor
Show more