Article

Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif.

Sir William Dunn School of Pathology, The University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom.
Journal of Biological Chemistry (Impact Factor: 4.65). 08/2004; 279(30):31823-32. DOI: 10.1074/jbc.M402974200
Source: PubMed

ABSTRACT Post-translational cleavage at the G protein-coupled receptor proteolytic site (GPS) has been demonstrated in many class B2 G protein-coupled receptors as well as other cell surface proteins such as polycystin-1. However, the mechanism of the GPS proteolysis has never been elucidated. Here we have characterized the cleavage of the human EMR2 receptor and identified the molecular mechanism of the proteolytic process at the GPS. Proteolysis at the highly conserved His-Leu downward arrow Ser(518) cleavage site can occur inside the endoplasmic reticulum compartment, resulting in two protein subunits that associate noncovalently as a heterodimer. Site-directed mutagenesis of the P(+1) cleavage site (Ser(518)) shows an absolute requirement of a Ser, Thr, or Cys residue for efficient proteolysis. Substitution of the P(-2) His residue to other amino acids produces slow processing precursor proteins, which spontaneously hydrolyze in a defined cell-free system. Further biochemical characterization indicates that the GPS proteolysis is mediated by an autocatalytic intramolecular reaction similar to that employed by the N-terminal nucleophile hydrolases, which are known to activate themselves by self-catalyzed cis-proteolysis. We propose here that the autoproteolytic cleavage of EMR2 represents a paradigm for the other GPS motif-containing proteins and suggest that these GPS proteins belong to a cell surface receptor subfamily of N-terminal nucleophile hydrolases.

0 Bookmarks
 · 
80 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Postnatal enlargement of the mammalian intestine comprises cylindrical and luminal growth, associated with crypt fission and crypt/villus hyperplasia, respectively, which subsequently predominate before and after weaning. The bipartite adhesion-G protein-coupled receptor CD97 shows an expression gradient along the crypt-villus axis in the normal human intestine.We here report that transgenic mice overexpressing CD97 in intestinal epithelial cells develop an upper megaintestine. Intestinal enlargement involved an increase in length and diameter, but did not affect microscopic morphology, as typical for cylindrical growth. The megaintestine was acquired after birth before weaning, independent of the genotype of the mother, excluding milk constituents as driving factor. CD97 overexpression did not regulate intestinal growth factors, stem cell markers, and Wnt signaling, which contribute to epithelial differentiation and renewal, nor did it affect suckling-to-weaning transition. Consistent with augmented cylindrical growth, suckling but not adult transgenic mice showed enlarged crypts and thus more crypt fissions caused by a transient increase of the crypt transit-amplifying zone. Intestinal enlargement by CD97 required its seven-span transmembrane/cytoplasmic C-terminal fragment but not the N-terminal fragment binding partner CD55. In summary, ectopic expression of CD97 in intestinal epithelial cells provides a unique model for intestinal cylindrical growth occurring in breast-fed infants.
    Molecular biology of the cell 05/2013; · 5.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Elucidation of structural information can greatly facilitate the understanding of molecular function. A recent example is the description of the G-protein-coupled receptor (GPCR) autoproteolysis-inducing (GAIN) domain, an evolutionarily ancient fold present in Adhesion-GPCRs (aGPCRs) and polycystic kidney disease 1 (PKD1)-like proteins. In the past, the peculiar autoproteolytic capacity of both membrane protein families at the conserved GPCR proteolysis site (GPS) had not been described in detail. The physiological performance of aGPCRs and PKD1-like proteins is thought to be regulated through the GPS, but it is debated how. A recent report provides pivotal details by discovery and analysis of the GAIN domain structure that incorporates the GPS motif. Complementary studies have commenced to analyze physiological requirements of the GAIN domain for aGPCR function, indicating that it serves as the linchpin for multiple receptor signals. Structural analysis and functional assays now allow for the dissection of the biological duties conferred through the GAIN domain.
    Trends in Pharmacological Sciences 07/2013; · 9.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD97 is a widely expressed adhesion class G-protein-coupled receptor (aGPCR). Here, we investigated the presence of CD97 in normal and malignant human skeletal muscle as well as the ultrastructural and functional consequences of CD97 deficiency in mice. In normal human skeletal muscle, CD97 was expressed at the peripheral sarcolemma of all myofibers, as revealed by immunostaining of tissue sections and surface labeling of single myocytes using flow cytometry. In muscle cross-sections, an intracellular polygonal, honeycomb-like CD97-staining pattern, typical for molecules located in the T-tubule or sarcoplasmatic reticulum (SR), was additionally found. CD97 co-localized with SR Ca2+-ATPase (SERCA), a constituent of the longitudinal SR, but not with the receptors for dihydropyridine (DHPR) or ryanodine (RYR), located in the T-tubule and terminal SR, respectively. Intracellular expression of CD97 was higher in slow-twitch compared to most fast-twitch myofibers. In rhabdomyosarcomas, CD97 was strongly upregulated and in part more N-glycosylated compared to normal skeletal muscle. All tumors were strongly CD97-positive, independent of the underlying histological subtype, suggesting high sensitivity of CD97 for this tumor. Ultrastructural analysis of murine skeletal myofibers confirmed the location of CD97 in the SR. CD97 knock-out mice had a dilated SR, resulting in a partial increase in triad diameter yet not affecting the T-tubule, sarcomeric, and mitochondrial structure. Despite these obvious ultrastructural changes, intracellular Ca2+ release from single myofibers, force generation and fatigability of isolated soleus muscles, and wheel-running capacity of mice were not affected by the lack of CD97. We conclude that CD97 is located in the SR and at the peripheral sarcolemma of human and murine skeletal muscle, where its absence affects the structure of the SR without impairing skeletal muscle function.
    PLoS ONE 01/2014; 9(6):e100513. · 3.73 Impact Factor

Full-text

View
27 Downloads
Available from
May 19, 2014