Article

Reconstitution of a staphylococcal plasmid-protein relaxation complex in vitro.

Astbury Centre for Structural Molecular Biology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
Journal of Bacteriology (Impact Factor: 3.19). 07/2004; 186(11):3374-83. DOI: 10.1128/JB.186.11.3374-3383.2004
Source: PubMed

ABSTRACT The isolation of plasmid-protein relaxation complexes from bacteria is indicative of the plasmid nicking-closing equilibrium in vivo that serves to ready the plasmids for conjugal transfer. In pC221 and pC223, the components required for in vivo site- and strand-specific nicking at oriT are MobC and MobA. In order to investigate the minimal requirements for nicking in the absence of host-encoded factors, the reactions were reconstituted in vitro. Purified MobA and MobC, in the presence of Mg2+ or Mn2+, were found to nick at oriT with a concomitant phosphorylation-resistant modification at the 5' end of nic. The position of nic is consistent with that determined in vivo. MobA, MobC, and Mg2+ or Mn2+ therefore represent the minimal requirements for nicking activity. Cross-complementation analyses showed that the MobC proteins possess binding specificity for oriT DNA of either plasmid and are able to complement each other in the nicking reaction. Conversely, nicking by the MobA proteins is plasmid specific. This suggests the MobA proteins may encode the nicking specificity determinant.

0 Bookmarks
 · 
69 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A multiplex PCR method, aimed at the detection of genes associated with biogenic amine production, identified the odc gene encoding ornithine decarboxylase in 1 of 15 strains of Staphylococcus epidermidis. The ability of the positive strain, S. epidermidis 2015B, to produce putrescine in vitro was demonstrated by high-performance liquid chromatography (HPLC). In this strain, the odc gene was detected on plasmid DNA, suggesting that the ability to form putrescine is carried by a mobile element, which explains the fact that the trait is strain dependent within the S. epidermidis species. A 6,292-bp nucleotide sequence harboring the putative odc gene was determined. S. epidermidis ornithine decarboxylase (ODC) showed 60 to 65% sequence identity with known ODCs of Gram-positive as well as Gram-negative bacteria. Downstream of the odc gene, a gene encoding a putative amino acid transporter was found that shared 59% sequence identity with the ornithine/putrescine exchanger (PotE) of Escherichia coli. Cloning and expression of the potE gene of S. epidermis 2015B in Lactococcus lactis demonstrated that the gene product transported ornithine and putrescine into the cells and efficiently exchanged putrescine for ornithine. Analysis of the flanking regions showed high identity levels with different S. epidermidis plasmid sequences, which would confirm the plasmidic location of the odc operon. It follows that the odc and potE gene pair encodes a putrescine-producing pathway in S. epidermis 2015B that was acquired through horizontal gene transfer.
    Applied and Environmental Microbiology 08/2010; 76(16):5570-6. · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein MobM, the relaxase involved in conjugative transfer of the streptococcal plasmid pMV158, is the prototype of the MOB(V) superfamily of relaxases. To characterize the DNA-binding and nicking domain of MobM, a truncated version of the protein (MobMN199) encompassing its N-terminal region was designed and the protein was purified. MobMN199 was monomeric in contrast to the dimeric form of the full-length protein, but it kept its nicking activity on pMV158 DNA. The optimal relaxase activity was dependent on Mn(2+) or Mg(2+) cations in a dosage-dependent manner. However, whereas Mn(2+) strongly stabilized MobMN199 against thermal denaturation, no protective effect was observed for Mg(2+). Furthermore, MobMN199 exhibited a high affinity binding for Mn(2+) but not for Mg(2+). We also examined the binding-specificity and affinity of MobMN199 for several substrates of single-stranded DNA encompassing the pMV158 origin of transfer (oriT). The minimal oriT was delimited to a stretch of 26 nt which included an inverted repeat located eight bases upstream of the nick site. The structure of MobMN199 was strongly stabilized by binding to the defined target DNA, indicating the formation of a tight protein-DNA complex. We demonstrate that the oriT recognition by MobMN199 was highly specific and suggest that this protein most probably employs Mn(2+) during pMV158 transfer.
    Nucleic Acids Research 02/2011; 39(10):4315-29. · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antibiotic resistance in bacterial pathogens poses an ever-increasing risk to human health. In antibiotic-resistant strains of Staphylococcus aureus this resistance often resides in extra-chromosomal plasmids, such as those of the pT181 family, which replicate via a rolling-circle mechanism mediated by a plasmid-encoded replication initiation protein. Currently, there is no structural information available for the pT181-family Rep proteins. Here, the crystallization of a catalytically active fragment of a homologous replication initiation protein from the thermophile Geobacillus stearothermophilus responsible for the replication of plasmid pSTK1 is reported. Crystals of the RepSTK1 fragment diffracted to a resolution of 2.5 Å and belonged to space group P212121.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 10/2013; 69(Pt 10):1123-1126. · 0.55 Impact Factor

Full-text

View
0 Downloads
Available from